
Tunneling over IP Based on Match-Action Table in Software
Defined Networks

Keyao Zhang, Jun Bi, Yangyang Wang, Yu Zhou, Zhengzheng Liu
Institute of Network Science and Cyberspace, Tsinghua University

Department of Computer Science, Tsinghua University
Beijing National Research Center for Information Science and Technology(BNRist)

zhang-ky15@mails.tsinghua.edu.cn,junbi@tsinghua.edu.cn

ABSTRACT
Tunneling over IP has been widely used in the field of network
virtualization, overlay network, heterogeneous network, and so on.
Nonetheless, there exists maintenance difficulty, management com-
plexity, low efficiency in tunneling. SDN provides open and unified
APIs, which greatly enhances the network management efficiency.
However, as a significant southbound interface, OpenFlow does
not primitively support the establishment of IP tunnels, therefore
it still relies on traditional manual configurations. In this paper, we
adopt Match-Action Table (MAT) programming model and propose
a new IP tunnel mechanism, called MAT tunnel. The MAT tunnel
can encapsulate and decapsulate packets directly by installing flow
rules instead of manually configuring tunnel ports. We implement
the MAT tunnel prototype based on Open vSwitch and Floodlight.
We also construct a simulation environment based on a real topol-
ogy. Comparing traditional tunnels, the MAT tunnel can reduce the
average delay while improving the programmability and flexibility.
In addition, the tunnel path switching tests suggest the MAT tunnel
can significantly decrease the delay jitter and throughput loss.

CCS CONCEPTS
• Networks→ Programmable networks;

KEYWORDS
Software Defined Networks, OpenFlow, Tunneling over IP, Overlay
Network, Open vSwitch
ACM Reference Format:
Keyao Zhang, Jun Bi, YangyangWang, Yu Zhou, Zhengzheng Liu. 2018. Tun-
neling over IP Based on Match-Action Table in Software Defined Networks.
In CFI 2018: The 13th International Conference on FutureInternet Technologies,
June 20–22, 2018, Seoul, Republic of Korea.ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3226052.3226054

1 INTRODUCTION
Tunneling over IP is an important networking approach and has
lots of significant usages in various networking environments. For
example, it is used for network virtualization in data centers in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CFI 2018, June 20–22, 2018, Seoul, Republic of Korea
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6466-9/18/06. . . $15.00
https://doi.org/10.1145/3226052.3226054

order to isolate network resources and tenants [1]. We can also
construct overlay network via IP Tunneling on the Internet for
performance improvement [4, 5]. In addition, Tunneling over IP
has been widely used to connect heterogeneous network domains
(e.g., ICN, IPv6). However, these tunnels are usually created and
maintained via manually configurations on network devices, which
is complex, inconvenient and error-prone.

With decoupled control and data plane, Software Defined Net-
works (SDN) enable a flexible and efficient paradigm of network
management [3]. In the last few years, SDN have been widely
applied in campus, enterprise, and data center networks. The estab-
lishment and management of tunnels is an important requirement
of many applications in SDN (e.g., SD-WAN). However, OpenFlow
[7], which is the most influential instance of the SDN architecture,
only supports tag-based tunneling (e.g., MPLS). Tunneling over IP
is not defined in the specification of Openflow switch. As a result,
OpenFlow has many restrictions on network application, function
and scalability in terms of tunneling.

In order to provide the function of IP tunneling, data plane which
supports OpenFlow usually adopts additional programming inter-
faces. For example, in Open vSwitch (OVS) [9], a well-known soft-
ware switch, OVSDB [8] is proposed for managing tunnels. But
these interfaces are different on different targets. So tunneling over
IP is not actually simplified in SDN, suffering from maintenance
difficulty, management complexity, and low flexibility.

Inspired by the Match-Action Table (MAT) programming models
in OpenFlow, we argue that expressing tunneling logic with the
MAT model could improve the programmability and flexibility. We
propose a mechanism of tunneling over IP based on MAT in SDN,
called MAT tunnel and implement the MAT tunnel prototype,
including VxLAN [6] and GRE [2] tunnels.

Our key contributions are as follows:
• We introduce a mechanism of tunneling over IP based on
Match-Action Table. Our MAT tunnel allows controller to in-
stall table entries specifying the encapsulation/decapsulation
actions and parameter of the tunnel rather than any explicit
tunnel configuration interface. (Section 2)

• We implement the MAT tunnel prototype based on Open
vSwitch and Floodlight. (Section 3). And we also construct a
simulation environment based on a real topology and com-
pare the MAT Tunnel with tunnels configured by OVSDB in
terms of the delay and throughput (Section 4)

2 DESIGN OF MAT TUNNEL
The overall design of MAT Tunnel is illustrated in Figure 1. The data
plane consists of OpenFlow switches which need to be extended to

https://doi.org/10.1145/3226052.3226054
https://doi.org/10.1145/3226052.3226054

CFI 2018, June 20–22, 2018, Seoul, Republic of Korea Keyao Zhang, Jun Bi, Yangyang Wang, Yu Zhou, Zhengzheng Liu

support the MAT tunnel function. We extend the Match and Action
Fields in OpenFlow Flow_Mod messages so that the controllers can
install flow entries about MAT tunnel on the switches. We also
provide RESTful API on controllers for network applications and
administrators, which makes it easier to create or remove the MAT
tunnel.

Figure 1: Overview of MAT tunnel.

However, there are some challenges in the design:
(1) How can we implement tunneling over IP through Match-

Action Table? And how does it work in the switches? More-
over, we should explore how to complete tunnel encapsula-
tion and decapsulation according to the flow entries.

(2) In most OpenFlow implementations (hardware or software),
the interfaces attached to anOpenFlow instance in the switches
will work as dumb layer-2 ports, for which you can’t con-
figure IP address. Packets from these interfaces will not be
handled by layer-3 network stack. So we need to deal with
ARP messages of the MAT tunnel.

2.1 Match-Action Extension
This section will introduce our Match-Action extension in Open-
Flow to express tunneling logic. In OpenFlow, network data struc-
ture is reconstructed with Type-Length-Value (TLV) format to sup-
port user-defined combination and extension of header fields and
actions. As shown in Figure 2, we add new Match and Action types
in the MAT tunnel.

For instance, as for VxLAN, the new field VXLAN Network Iden-
tifier (VNI) in packets needs to be matched. We also introduce 2 new
types ofAction (PUSH_VXLAN_TUNNEL and POP_VXLAN_TUNNEL)
for tunneling encapsulation and decapsulation. The Value of en-
capsulation action (e.g., PUSH_VXLAN_TUNNEL) will have the nec-
essary parameters, such as source IP address (src_ip), destination
IP address (dst_ip) and VXLAN Network Identifier (vni). After that,
controllers can specify the new Match field and Action type in
OpenFlow Flow_Mod messages.

Controllers can install flow entries for tunneling with the MAT
tunnel rather than any explicit configured tunnel interface. When
we want to create a MAT tunnel between two switches, 4 flow
entries need to be installed in all, one flow entry for encapsulation
and one for decapsulation on each switch. The switches work as
the Tunnel Endpoints (TEP) according to the Match-Action Table.
The control information and policy can be managed by the con-
trollers, so the MAT tunnel decouples the control and forwarding
of tunneling.

Figure 2: Match-Action Extension in the MAT tunnel.

Table 1 shows the flow entries in one direction (Host 1 -> Host
4, in Figure 1). Controllers will install different flow entries with
different identifiers (e.g., vni for VxLAN) on the tunnel endpoint
switches for different virtual networks. With the global view, con-
trollers know the relationship between identifiers and ports on
the switches, so the MAT tunnel can also support the isolation of
virtual networks.

Table 1: Flow Entries of MAT tunnel on the switches in one
direction.

Switch Match Action
push_vxlan_tunnel = (

Ingress inport = from host 1 src_ip = switch 1 IP
Tunnel src_mac = host 1 MAC dst_ip = switch 2 IP
Endpoint dst_mac = host 4 MAC vni = 1001)

output = outer port
inport = outer port

Egress src_ip = switch 1 IP pop_vxlan_tunnel
Tunnel dst_ip = switch 2 IP output = to host 4
Endpoint udp_port = 4789 MAC

vni = 1001

2.2 Workflow in the Switch
In this section, we will introduce how to handle tunnel packets in
the switches. In the traditional tunnel implementation of OpenFlow
switches, you should create a tunnel interface and attach it to an
OpenFlow instance. This tunnel interface can complete encapsula-
tion and decapsulation functions with your tunnel configurations.
But just as mentioned before, the interface in the OpenFlow in-
stance does not have the capability of layer-3. So encapsulated
tunnel packets will be forwarded to other layer-3 interface outside
the OpenFlow instance according to the routing table in the switch.

We will take Open vSwitch, the software switch as an example.
Illustrated in Figure 3(a), the ovs-bridge can be considered as an
OpenFlow instance. We have already added a tunnel port to the
ovs-bridge. When a packet from eth2 arrives at the ovs-bridge,
it is matched against the flow table and forwarded to the tunnel
port. The tunnel port is responsible for packet encapsulation. The
encapsulated packet will match the longest prefix in routing table
and be sent to the physical port (eth1) outside the ovs-bridge. The
decapsulation process is similar.

As shown in Figure 3(b), the MAT Tunnel does not rely on any
explicit tunnel port. Instead, we should add the physical egress port

Tunneling over IP Based on Match-Action Table in Software Defined Networks CFI 2018, June 20–22, 2018, Seoul, Republic of Korea

Host 1

OVS 1

eth1

ovs-bridge 1

eth1

Tunnel
Port

Routing
Table

Flow Table

eth2

Host 2

OVS 2

eth1

eth1

Tunnel
Port

Flow Table

Routing
Table

ovs-bridge 2

eth2

(a) Tunnel implemented by Open vSwitch.

Host 1

OVS 1

ovs-bridge 1

eth1

Routing
Table

Flow Table

eth2

Host 2

OVS 2

eth1

Flow Table

Routing
Table

Tunnel
Port

(eth1)

Tunnel
Port

(eth1)

ovs-bridge 2

eth2

(b) MAT Tunnel.

Figure 3: Tunnel workflow in the switch.

(eth1) to the ovs-bridge. It must be noted that, when the port is
attached, it will work on layer-2 with no IP address. So controllers
should assign routable virtual IP addresses for tunnel endpoints in
encapsulation actions to ensure the reachability on the Internet.
In tunnel ingress endpoint, the packet is matched against the flow
table, encapsulated according to the actions and then forwarded
directly to the physical interfaces (eth1). In egress endpoint, the
virtual switch can match the tunnel packet and decapsulate the
packet. The original configuration will be the parameters of the
encapsulation actions, which means this schema can work in equal.

From the workflow in the switch, we can expect a simplified
logic to handle tunnel packets with the MAT tunnel, which can
help reduce the cost of network stack.

2.3 ARP Proxy on the Controller
This section will introduce our solutions to handle ARP messages of
the MAT tunnel. As mentioned before, the tunnel interface attached
to an OpenFlow instance in the MAT tunnel works on layer-2 with
no IP address. The controller allocates a routeable virtual IP address
and virtual MAC address for the tunnel interfaces and maintains
an IP-MAC binding table. While encapsulating, the controller tells
the OpenFlow instance about the MAC addresses of ingress and
egress tunnel endpoints, so it will know how to encapsulate outer
MAC header.

If ingress and egress tunnel endpoints are in the same subnet, it
works well. But if they are in different subnets, the tunnel interface
won’t handle any ARP request, and the OpenFlow instance won’t
generate the ARP response by itself as well. Thus, the network
gateway which the interface is connected to can’ t obtain the MAC
address of tunnel endpoint. To solve the problem, we design an
ARP proxy on controllers to deal with the ARP requests of tunnel
interfaces. When the encapsulation packet arrives at the gateway
which the egress tunnel endpoint is connected to, the ARP request
for egress tunnel endpoint will be sent to the controller via Packet_In
message and the controller replies via Packet_Out message. Then
the tunnel packet can be transmitted to egress tunnel endpoint and
decapsulated.

3 IMPLEMENTATION
We implement the MAT Tunnel prototype based on Open vSwitch
including GRE and VxLAN tunnels. We also provide REST API

on floodlight controller. Source code is at https://github.com/mat-
tunnel.

Figure 4: MAT tunnel implementation in Open vSwitch.

As shown in Figure 4, there are kernel and user space in the Open
vSwitch. The first packet of a new flow will be sent to user space,
which is the slow path. And the following packets of the flow will
just be handled in kernel, not going through user space. This path
is called fast path. We have added operations about the MAT tunnel
in both slow path and fast path. For example, our implementation
will decode MAT tunnel related Flow-Mod messages and save the
rules in the flow table. When a tunnel packet arrives, it can be
matched against its tunnel header fields. Regarding different tunnel
protocols, the encapsulation and decapsulation actions are different.
For UDP Tunnel like VxLAN, the switch pushes tunnel header (e.g.,
VxLAN Header), outer UDP header, IP header and MAC header in
encapsulation actions.

4 EVALUATION
As shown in Figure 5, we construct a simulation environment based
on the real topology of Sprint in Topology Zoo dataset [10], which
consists of 11 nodes and 18 links. We create tunnels between all
neighbor switches (OVS). We measure the Ping latency between

CFI 2018, June 20–22, 2018, Seoul, Republic of Korea Keyao Zhang, Jun Bi, Yangyang Wang, Yu Zhou, Zhengzheng Liu

Figure 5: Topology for evaluation.

1 2 3 4 5

0.4

0.6

0.8

1.0

1.2

1.4

1.6

La
te

nc
y

(m
s)

Hop

 GRE
 VxLAN
 MAT-GRE
 MAT-VxLAN
 No Tunnel

Figure 6: Ping latency between the two hosts.

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

Th
ro

ug
hp

ut
 (M

bi
ts

/s
)

Time (s)

 GRE
 VxLAN
 MAT-GRE
 MAT-VxLAN

Figure 7: Throughput fluctuation in path switching.

0 5 10 15 20 25
0.001

0.01

0.1

1

10

100

1000

Ji
tte

r (
m

s)

Time (s)

 GRE
 VxLAN
 MAT-GRE
 MAT-VxLAN

Figure 8: Jitter fluctuation in path switching.

the two hosts passing through one to five hops of different tun-
nels. Figure 6 shows the result of standard OVS GRE, OVS VxLAN,
MAT GRE and MAT VxLAN tunnels. We find our MAT tunnels
have less latency in general, compared with the same type of OVS
implemented tunnels.

We also conduct the measurement of path switching via tunnels.
Two hosts, HOST1 and HOST2, are connected to OVS1 and OVS3.
The default path of HOST1 to HOST2 is HOST1-OVS1-OVS10-
OVS4-OVS3-HOST2. Making the link between neighbor switches
down or up may cause the path switching. The path switching will
result in the creation and removal of tunnels. For OVS implemented
tunnels, we send the tunnel configurations via OVSDB. For MAT
tunnels, we install the flow entries through OpenFlow. We measure
the throughput and jitter of HOST1 and HOST2 by iPerf tools.
It is illustrated in Figure 7 and Figure 8 that we can expect less
fluctuation in throughput and jitter with MAT tunnels, because
configuring virtual tunnel interfaces via OVSDB needs to create a
network device in linux kernel, which will result in higher overhead
compared with installing rules in MAT tunnel. Obviously, MAT
Tunnel is more flexible and efficient.

5 CONCLUSIONS
This paper proposes the MAT tunnel, a mechanism of tunneling
over IP based on Match-Action Table in SDN and implements a
MAT tunnel prototype. The result shows that the MAT tunnel has
lower latency in communication, less fluctuation in throughput and
jitter in path switching while improving the programmability and
flexibility of tunneling.

ACKNOWLEDGMENTS
This work is supported by National Key R&D Program of China
(2017YFB0801701), and National Natural Science Foundation of
China (No. 61472213). Jun Bi is the corresponding author.

REFERENCES
[1] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. 2010. A survey of network

virtualization. Computer Networks 54, 5 (2010), 862–876.
[2] Dino Farinacci, P Traina, Stan Hanks, and T Li. 1994. Generic routing encapsulation

(GRE). Technical Report.
[3] Open Networking Fundation. 2012. Software-defined networking: The new norm

for networks. ONF White Paper 2 (2012), 2–6.
[4] Jinu Kurian and Kamil Sarac. 2010. A survey on the design, applications, and

enhancements of application-layer overlay networks. ACM Computing Surveys
(CSUR) 43, 1 (2010), 5.

[5] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim.
2005. A survey and comparison of peer-to-peer overlay network schemes. IEEE
Communications Surveys & Tutorials 7, 2 (2005), 72–93.

[6] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet Agarwal, Lawrence
Kreeger, T Sridhar, Mike Bursell, and Chris Wright. 2014. Virtual extensible local
area network (VXLAN): A framework for overlaying virtualized layer 2 networks
over layer 3 networks. Technical Report.

[7] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
enabling innovation in campus networks. ACM SIGCOMM Computer Communi-
cation Review 38, 2 (2008), 69–74.

[8] Ben Pfaff and Bruce Davie. 2013. The open vSwitch database management
protocol. (2013).

[9] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. 2015. The
Design and Implementation of Open vSwitch.. In NSDI. 117–130.

[10] Topology Zoo 2012. The Internet Topology Zoo. (2012). Retrieved July 18, 2012
from http://www.topology-zoo.org/dataset.html

http://www.topology-zoo.org/dataset.html

	Abstract
	1 Introduction
	2 Design of MAT Tunnel
	2.1 Match-Action Extension
	2.2 Workflow in the Switch
	2.3 ARP Proxy on the Controller

	3 Implementation
	4 Evaluation
	5 Conclusions
	Acknowledgments
	References

