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ABSTRACT

Modern network research and operations are inseparable from net-

work testers to evaluate performance limits of proofs-of-concept,

troubleshoot failures, etc. Existing network testers suffer from ei-

ther constrained flexibility or a low performance-cost ratio. In this

paper, we propose a new network tester, HyperTester . The core of

HyperTester is to leverage new-generation programmable switches

for generating and capturing test traffic with high performance,

low cost, and remarkable flexibility. We design a series of efficient

mechanisms, including template-based packet generation, false-

positive-free counter-based queries, and stateless connections to

realize various network testing tasks upon switches with limited

programmability and resources. Meanwhile, to facilitate developing

testing tasks upon HyperTester , we provide a high-level network

testing API.We have implementedHyperTester on the Tofino switch

and built dozens of network testing tasks. The evaluations on the

hardware testbed show that HyperTester supports line-rate packet

generation (400Gbps in the testbed) with highly-accurate rate con-

trol, while HyperTester can save $40150 per Tps and 9225W per

Tbps when compared with the software network testers.

CCS CONCEPTS

•Networks→ Protocol testing and verification; Network mea-

surement.
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1 INTRODUCTION

Network testers proactively generate and capture test packets to

evaluate network performance, which is essential for network re-

searching and operating. On the one hand, network researchers can

leverage network testers to perform Internet-wide scanning [1–3]

and benchmark proofs-of-concept [4–6]. On the other hand, net-

work operators can use network testers for measurement of latency

or packet loss [7–9], failure troubleshooting [10–18], etc. Further-

more, the recent development of networks raises strigent demands

on network testers from two perspectives. One is high-performance

packet generation driven by ever-increasing bandwidth, the other

is flexible customization to meet the constant appearance of new

protocols and functions.

Existing network testers can be categorized into hardware and

software approaches. First, commodity network testers [19, 20] based

on proprietary hardware can achieve high throughput (over 1Tbps)

per device. Nevertheless, commodity network testers have limited

flexibility as it is hard to customize proprietary hardware to test

new protocols or functions. Besides, commodity network testers

are typically expensive, and a packet generation module with dual

10Gbps ports costs as much as $25000 [21]. Open-sourced hardware

network testers [21, 22] based on FPGA are cheap and reconfigurable

but of poor performance. Second, software network testers [4–6, 23]

support flexible customization of packet generation logic, but have

to make a trade-off between performance and cost. An 8-core server

can provide less than 100Gbps [5] throughput. If operators require

higher throughput to test high-performance prototypes or large-

scale networked systems, more servers are needed, introducing

steeply-increased costs. Furthermore, software network testers

suffer from low rate control accuracy, degrading their effective-

ness [24]. In summary, existing network testers either have low

performance-cost ratios or yield unsatisfactory flexibility.

In this paper, we present HyperTester , leveraging the power

of programmable switches [25–29] for high-performance network

testing. Programmable switches are designed for reconfigurable

packet processing while offering multi-Tbps bandwidth, which

makes it ideal for executing various network testing tasks with

high-performance requirements. On the one hand, HyperTester can

efficiently process over 1Tbps test traffic with one programmable

switch that is as cheap as a mid-ranged server [30]. On the other

hand, HyperTester yields future-proof flexibility as operators can

reconfigure programmable switches to test new protocols and func-

tions. Furthermore, HyperTester also provides a suite of network
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testing API (NTAPI ) for operators to facilitate the specification of

network testing intents. Until now, HyperTester supports a wide

range of applications, including stress testing, Internet scanning,

delay measurement, denial-of-service (DoS) attack emulation, etc.

However, designing HyperTester is non-trivial due to two chal-

lenges. First, there remains a gap between network testing logic and

the programmability of switching ASIC. Switching ASIC is good

at packet forwarding and cannot generate packets without ground.

Meanwhile, some network testing tasks require complex logic that

is beyond the capability of switching ASIC. To address this chal-

lenge, we take advantage of switch CPU to extend switching ASIC’s

programmability. We propose a template-based packet generation

mechanism leveraging switch CPU and switching ASIC simultane-

ously. In the mechanism, switch CPU generates a series of template

packets and performs the actions (e.g. payload customization) that

are hard for switching ASIC over template packets. Then, switching

ASIC accelerates template packets by recirculation, and generates

final test traffic via multicasting template packets at given rates.

Template-based packet generation makes a good trade-off between

performance and programmability via the co-design of switch CPU

and switching ASIC.

Second, network testing might forge massive connections or

conduct per-flow analysis, which requires intensive memory, but

memory resources in switching ASIC are limited. To address this

challenge, on the one hand, we introduce stateless connections to

avoid storing connection states. The stateless connection generates

response packets according to received packets, and we provide

a general mechanism to support stateless connections entirely on

data planes. On the other hand, we employ the counter-based algo-

rithm [31] instead of sketch-based algorithms [32, 33] to perform

accurate per-flow analysis. To guarantee per-flow analysis free of

false positives and optimize memory usage, we introduce exact key

matching and cuckoo hashing in switching ASIC. We also evict old

analysis counters to switch CPU to utilize the large DRAM residing

outside switching ASIC.

HyperTester is built upon the general capabilities of P4-programmable

switcheswhile being agnostic to underlying targets. The capabilities

required by HyperTester include reconfigurable match-action tables,

the recirculate primitive action, registers, time stamping, and mul-

ticasting. The former four capabilities are specific to P4 [34], while

the others are widely supported by traditional switches [35, 36].

We make four major contributions in this paper:

• We present HyperTester , a high-performance, low-cost, and flex-

ible network testing system that leverages the power of new-

generation programmable switches. (§3)

• We provide a new NTAPI to help operators express their intents

on network testing. (§4)

• We present the HyperTester design, which introduces template-

based packet generation, stateless connections, and the false-

positive-free counter-based algorithm to bridge the gap between

challenging requirements of practical network testing and limited

capabilities of switching ASIC. (§5)

• Wehave implemented a prototype ofHyperTester and built dozens

of network testing applications overHyperTester . The open-sourced

code of HyperTester is published at [37]. We evaluate HyperTester

on a testbed equipped with two Tofino switches. Evaluation

results show that NTAPI can effectively facilitate developing

network testing tasks and reduce the code size by over 74.4%.

HyperTester can generate up to 400Gbps traffic with arbitrary

packet sizes at line rate in our testbed. The rate control errors of

HyperTester are over one order of magnitude smaller than Moon-

Gen [5]. HyperTester can save $40150 per Tbps and 9225W per

Tbps when compared with MoonGen running on commodity

servers equipped with 8-core CPU. (§6 and §7)

2 BACKGROUND AND MOTIVATION

2.1 Background

P4 and programmable switches. P4 [38] is a domain-specific

language for programming switching ASIC based on the recon-

figurable match-action table (RMT) [25] model. RMT consists of

two components, i.e. the parser and the pipeline. First, the parser

enables decoding user-defined header formats. Second, the pipeline

contains multiple sequential physical stages, by whichmatch-action

tables are implemented. With P4, programmers can specify match

fields and compound actions for each table, and P4 supports control

flow among tables to define the table execution sequence. Moreover,

P4 also supports stateful components, e.g. registers, to store states

consistently. A P4 program only defines a portion of the overall data

plane function, while programmable switches also need to populate

the tables with rules after installing the P4 program into switching

ASIC. Apart from switching ASIC, programmable switches have

switch CPU, which connects to switching ASIC by PCIe. Switch

CPU is the control plane of switching ASIC and can execute various

control programs, like the BGP agent and the statistic collector.

2.2 Related Works

In this section, we show related works on network testing.

Commodity network testers. Based on proprietary hardware,

commodity network testers [19, 20] provide rich network testing

functions, user-friendly GUI, and high packet generation/capture

throughput, but are inevitably expensive. For example, a dual-

10Gbps-port packet generationmodule costs asmuch as $25,000 [21],

and the price of a dual-100Gbps-port packet generation module

could quickly rise to over $100,000 according to a network tester

seller. Furthermore, commodity network testers enable crafting

packets with user-defined formats but fall short of defining new

communication patterns for new protocols as well as new packet

capture and analysis algorithms. HyperTester yields much higher

flexibility than commodity network testers.

Programmable hardware network testers. There have been

many open-source network testers [21, 22] based on the programmable

hardware, FPGA [39]. Leveraging the programmability of FPGA,

programmable hardware network testers can be flexibly extended

to test new functions and protocols, but such flexibility comes with

heavy and notorious programming workload due to the non-trivial

development complexity of FPGA [40, 41]. Furthermore, compared

with HyperTester , FPGA-based network testers come with a much

lower performance-cost ratio, e.g. a NetFPGA board equipped with

four 10Gbps ports costs as much as $6999 [42].

Software network testers. There have been many software net-

work testers in the literature. At the early stage, software network
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testers are based on raw sockets [43] or kernel functions [4]. Thus,

traditional network testers come with quite limited performance

and accuracy [5, 21, 24]. With the advance of new NIC I/O tech-

niques, e.g. DPDK [44] and Netmap [45], the performance of soft-

ware network testers [4, 5] increases by over one order of magni-

tude. MoonGen [5] can generate up to 80Gbps small-sized packets

with eight cores, which is comparable to programmable hardware

network testers [21]. Moreover, software network testers provide

the highest flexibility among all types of network testers. How-

ever, many development efforts are required to optimize the net-

work tester performance. Furthermore, as a universal computing

platform, CPU has intrinsic restrictions on the packet generation

throughput. The network testing tasks need more CPU cores to

satisfy the requirement on higher throughput, introducing linearly-

increased equipment and power cost inevitably.

2.3 Motivation of HyperTester

In this part, we present three significant applications of network

testing as well as how HyperTester empowers these applications

regarding performance, cost, and flexibility.

Testing network prototypes. Evaluating prototypes thoroughly

is of great significance for researchers and engineers to understand

design flaws, performance limits, and reliability of their prototypes.

Meanwhile, the evaluation of network prototypes (e.g. new software

router) requires high-performance packet generation. In the past,

network prototypes are of poor performance (less than 1Gbps),

and the traditional software network testers [1, 4] supply enough

performance. Then, the emergence of fast I/O frameworks, e.g.

DPDK [44], elevates the network prototype performance by over

one order ofmagnitude (over 10Gbps). The new-generation network

testers based on the new I/O frameworks are proposed to generate

test packets with comparable performance. Nowadays, a lot of

novel network prototypes [46–57] run upon switches which have

much higher performance than software network testers and some

hardware network testers. Thus, to guarantee evaluation soundness,

researchers have to turn to commodity network testers that are too

expensive to afford. We argue that the development of existing low-

cost network testers does not catch up with the performance increase

of network prototypes. Thus, we proposeHyperTester , a low-cost and

flexible network tester promising multi-Tbps throughput, which

opens new opportunities for testing network prototypes.

Testing new protocols. The current advance of network pro-

grammability unleashes a trend of new protocols [38, 46–48, 58].

Inevitably, testing the networks using new protocols puts stringent

requirements on the flexibility of network testers. Software network

testers offer the required flexibility but fail in high-performance

testing. High-performance commodity network testers enable users

to customize the packets with user-defined formats. However, some

protocols require generating response packets according to the re-

ceived packets, just like SYN+ACK and ACK packets in the TCP ini-

tialization phase, but commodity network testers cannot customize

responsive packet generation. Besides, supporting new protocols in

commodity network testers need to upgrade the proprietary hard-

ware, which brings long developing time and additional investment.

Building upon protocol-independent programmable switches, Hy-

perTester can be flexibly programmed to support new protocols and

responsive packet generation. Furthermore, we provide NTAPI to

facilitate developing network testing tasks, shortening the develop-

ment lifecycle effectively.

Emulating DoS attacks. Denial of service (DoS) attacks are a dis-

ruptive presence for network services and cause a large amount

of revenue penalty [59–61]. In recent years, there is a foreseeable

trend that DoS attacks significantly increase in intensity, frequency,

and complexity. To combat DoS attacks, a lot of defense and mit-

igation systems [62–64] are proposed. Testing the effectiveness

of these defense systems is of great importance while requiring

precious DoS attack emulation. HyperTester is an ideal DoS attack

emulator for the following four reasons. First, HyperTester can gen-

erate up to 6.5Tbps attack traffic, which is much larger than the

attack volume of the recorded attacks. Second, implemented upon a

single programmable switch (occupying 1U for 3.2Tbps and 2U for

6.5Tbps), HyperTester comes with the remarkably low equipment

cost, power cost, and deployment cost. Third, HyperTester can be

flexibly programmed to emulate ever-changing DoS attacks that

evolve rapidly in the attack mechanism [59]. Fourth, HyperTester

comes with high port intensity (65 for 100Gbps ports and 260 for

25Gbps ports) and can inject traffic into multiple ingress points of

the systems to emulate distributed DoS attacks.

3 HYPERTESTER OVERVIEW

HyperTester is a high-performance, low-cost, and flexible network

tester driven by programmable switches. In this section, we present

an overview of challenges, key ideas, the architecture, and the

workflow of HyperTester .

3.1 Challenges and Key Ideas

HyperTester should overcome two challenges for high-performance

packet generation and test statistic collection in P4 switches.

Flexible packet generation against limited programmability

of switchingASIC. Network testing tasks can have different packet

generation requirements, e.g. payload customization and random

inter-departure time. On the one hand, switching ASIC does not

support creating packets. On the other hand, to guarantee line-

rate packet forwarding, switching ASIC comes with limited pro-

grammability. For example, the state-of-the-art switching ASIC (e.g.

Tofino) fall short of payload customization and have little control

over packet departure time. Thus, there remains a gap between

requirements on flexible packet generation and programmability of

switching ASIC, which challenges HyperTester .

Massive test states against limited resources of switching

ASIC. For some network testing tasks (e.g. web testing and IP

scanning), there could be massive connections, requiring a large

number of connection states in network testers. Moreover, network

testers need to analyze sent and received packets to get test sta-

tistics, such as per-port bandwidth and per-flow delay, which also

needs to store analysis states. This paper refers connection states

and statistic states to as test states uniformly. Maintaining per-flow

or per-connection test states could require up to hundreds of MB or

several GB memory, which is far beyond available memory (dozens

of MB) in switching ASIC.

To address the challenges derived from limited programmability

and resources of switching ASIC, we come up with two key ideas.
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Figure 1: Architecture of HyperTester.

Co-designing switch CPU and switching ASIC. P4 switches

have two programmable processors: the first one is low-performance

switch CPUwith high programmability, the other is high-performance

switching ASIC with limited programmability. To overcome the

programmability challenge, we introduce switch CPU as the co-

processor of switching ASIC, and co-design switch CPU and switch-

ing ASIC to implement packet generation logic. Thus, HyperTester

focuses on the following question: how to divide the packet genera-

tion labor between switch CPU and switching ASIC.

To answer this question, we propose a template-based packet

generation mechanism. In the mechanism, switch CPU generates

template packets and performs the actions, which are hard for

switching ASIC, on template packets. The CPU actions include

payload customization and header initialization. Then, switching

ASIC amplifies template packets injected by switch CPU. Amplify-

ing template packets involves speeding up template packets to a

given rate and creating test packets based on template packets via

replication. Template-based packet generation integrates benefits

of switch CPU and switching ASIC, while making a good trade-off

between programmability and performance.

State compression and stateless connection. We develop differ-

ent mechanisms to address the challenges of storing analysis states

and connection states. First, we use the counter-based algorithm,

like HashPipe [31], to store analysis states and introduce exact key

matching to remove false positives entirely. To further improve

the memory efficiency, we perform cuckoo hashing in the counter-

based algorithm. Moreover, we also evict the old analysis states

and upload them to switch CPU. Second, we adopt the stateless

connection mechanism and do not store any connection state. In a

stateless connection, HyperTester generates packets only according

to received packets. For example, if HyperTester receives a TCP SYN

packet, it will emit a TCP SYN+ACK packet. However, the stateless

connection cannot support complex connection logic, such as TCP

congestion control. Thus, HyperTester makes a trade-off between

memory efficiency and support for complex connection logic.

3.2 Architecture and Workflow

Figure 1 presents an architectural overview of HyperTester . From

top to down, HyperTester is completely implemented by a single

programmable switch and is composed of three layers, i.e. NTAPI,

switch CPU, and switching ASIC. First, network operators can

define various tasks with NTAPI (§4). Second, switch CPU com-

piles the tasks and generates template packets and the P4 program.

Next, the sender (§5.1) generates test packets according to template

packets. Moreover, switch CPU analyzes the test statistics from

switching ASIC. At last, switching ASIC will conduct acceleration

and edition operations on template packets and generate final test

traffic at the given speed in the sender. Meanwhile, switching ASIC

captures packets from devices/networks under test and collects test

statistics with the receiver (§5.2). The receiver could transfer data

to the sender to trigger stateless connections (§5.3).

4 NETWORK TESTING API

4.1 Programming Model

Network Testing API (NTAPI) has a similar programming model

with the stream processing frameworks, such as Flink [65]. These

frameworks abstract data as a stream of records, and execute trans-

formations over the records one by one. Correspondingly, NTAPI

takes the packet stream as the underlying programming model, and

the packet stream represents a stream of header fields. Moreover,

NTAPI provides packet stream trigger and packet stream query to

define the logic of packet generation and statistic collection, which

are the two primary functions of network testers.

Packet stream trigger. The programming model for packet gen-

eration in NTAPI is trigger-based. Specifically, each element in the

packet stream defines the header fields for the generated packets,

and the packet stream trigger defines how to start generating pack-

ets in the stream. In NTAPI, there are two types of packet stream

triggers. The first type of triggers generates packets as soon as

HyperTester starts. The second one is a query-based trigger, which

generates packets as soon as a particular packet arrives, and we

employ the query-based trigger to support stateless connections.

Packet streamquery. To get test statistics, NTAPI supports queries

over the packet stream. HyperTester supports typical query prim-

itives, such as reduce and distinct, which have been proved to

support heterogeneous network monitoring tasks [55]. In NTAPI,

the packet stream query can monitor the traffic in two directions.

First, the packet stream query can monitor the received traffic com-

ing from a specific port. Second, the packet stream query can also

monitor sent traffic generated by a trigger.

Category Field Syntax

Header
Header Field hdr_name .f ield_name

Payload payload

Control

Packet Length pkt_len

Injection Interval interval

Injection Port por t

Injection Loop loop

Table 1: Fields of Network Testing API.
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f ∈ Testing fields Refer to Table 1

q ∈ Query primitives Refer to Sonata [55]

n ∈ N Constant value

T ::= trigger ([Q]) Trigger primitive

S ::= set (Lf | f , Lv | V) Field set operation

Lf ::= (f {, f }) Field list

Lv ::= (V{,V}) Value list

V ::= n | Vr | Va Field value

Vr ::= random(ALG, P ,n) Random value

Va ::= range(n,n,n) Range array

Q ::= query([T]) Query primitive

triддer ::= T{.S} Packet stream trigger

query ::= Q{.q} Packet stream query

Table 2: Syntax of Network Testing API.

4.2 NTAPI

Based on the above programmingmodel, we propose an easy-to-use

API to define network testing tasks. Next, we will introduce the

fields that can be used by NTAPI as well as the syntax. §5 introduces

the compilation of NTAPI.

NTAPI fields. As shown in Table 1, there are two types of fields

that can be referred by NTAPI. The first one is related to header

fields and contains fields from parsed headers. NTAPI can use any

field from all the parsed headers. Furthermore, HyperTester enables

modifying the packet payload with a specified constant value. The

second one is related to packet generation control and includes

packet length, inter-departure interval, the port, and the number

of loops. HyperTester uses the inter-departure interval to specify

the packet generation rate. Furthermore, HyperTester re-generates

a packet stream for multiple times according to the loop value.

NTAPI syntax. Table 2 shows the basic syntax of NTAPI. There

are two types of statements in NTAPI. First, the packet stream

query starts with the query primitive and can monitor both the

sent traffic and the received traffic. NTAPI supports all the query

primitives listed in Sonata [55]. Second, the packet stream trigger

starts with trigger followed by a series of set primitives. The set

primitive enables users to define the value of NTAPI fields. There

are four value types, including the constant, the array, the range

array, and the random array. The constant can set the field to the

same value for all packets, while the other three can define the field

value for a list of packets. The array contains a pre-defined field

list. The range array is an arithmetic progression. The last one is to

generate the value list according to some random distributions, e.g.

normal distribution.

NTAPI by example. To show how to develop a network testing

task with NTAPI, we present an example in Table 3 for testing the

throughput of a network device. In the example, there are one trig-

ger and two queries. First of all, T t1 generates 64-byte UDP packets

with specific IP addresses and ports. Then, Qt
1 and Q

t
2 monitor the

traffic generated by T t1 and received packets respectively, and the

queries report the throughput in bytes per second.

5 DESIGN OF HYPERTESTER

This section demonstrates HyperTester’s solutions to the following

questions. The first one is how to generate required traffic for various

testing tasks based on the capabilities of P4-programmable switches

T t

1 = tr iддer ()

.set ([dip, sip, proto, dpor t, spor t ], [X , Y , udp, 1, 1])

.set ([loop, pkt_len], [0, 64])

Q t

1 = query(T t

1 ).map(p → (pkt_len)).r educe(f unc = sum)

Q t

2 = query().map(p → (pkt_len)).r educe(f unc = sum)

Table 3: Throughput testing with HyperTester.

(§5.1). The second one is how to collect accurate test statistics with

limited memory resources of switching ASIC (§5.2). The last one is

how to support stateless connections (§5.3).

5.1 HyperTester Packet Sender

In this part, we present the design of HyperTester Packet Sender

(HTPS), which generates test traffic with the capabilities of pro-

grammable switches. In brief, we use four capabilities specific to

P4, i.e. match-action tables, registers, data plane time-stamps, and

recirculate primitive action. Moreover, we use one general switch ca-

pability, i.e. multicast (mcast) engine in the queuing system, which

can replicate packets to specific ports.

Figure 2 and Figure 3 show the overall design of HTPS and the

component layout in RMT respectively. Logically, HTPS mimics cy-

clotron and keeps accelerated packets looping in cycles. The whole

journey of packets in HTPS includes three sequential steps. First,

HTPS accelerates template packets to 100Gbps with the accelera-

tor. Second, HTPS generates replicas for template packets with the

replicator. Last, HTPS modifies the headers of replicated packets

and generates test traffic with the editor. In the remaining part, we

will present the design of the three components.

Accelerator. Residing at the ingress pipeline, the accelerator re-

circulates each non-replicated template packets. Template packets

travel the recirculation loop constantly, making the accelerator

a stable packet source for the replicator. Our experiments testify

that Tofino [28] could recirculate packets at a speed of no less

than 100Gbps. Furthermore, the accelerator can recirculate multi-

ple template packets simultaneously, and the maximum number

of recirculated packets is demonstrated in §7.3. Figure 3 is not the

distinctive layout for the accelerator, and the accelerator can also

reside at the egress pipeline, which is further discussed in §6.

Replicator. Taking template packets in the accelerator as input,

the replicator performs packet replication at given rates. As shown

in Figure 3, the replicator consists of a rate control timer and amcast

engine. First, the replicator conducts rate control via adjusting the

inter-departure time of test packets. Switching ASIC provides a

nanosecond-level timestamp for each incoming packet, and the pe-

riodic timer records the departure time of the last replicated packet.

Once the difference between the current time and the recorded

departure time exceeds a given threshold, the replicator will direct

Figure 2: Design of HyperTester Packet Sender.
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Figure 3: HTPS component layout in RMT.

the template packets to the mcast engine. Meanwhile, the timer will

record the new departure time. Through changing the timer thresh-

old, the replicator manages to control the throughput of replicated

template packets with high accuracy. The rate control precision

depends on the minimal arrival time of template packets and is

around 6.4ns on Tofino for 64-byte packets.

Second, HTPS employsmulticast, a general primitive widely sup-

ported by commodity switches, to create template packet replicas.

Going through the mcast engine, normal template packets will

continue to be recirculated. In this manner, the replicator can con-

stantly acquire packets from the accelerator. The mcast engine can

replicate packets to multiple ports in parallel, and the replicated

template packets will go to the editor for further processing.

Editor. Residing at the egress pipeline, the editor modifies header

fields according to NTAPI and generates test traffic finally. The

editor can modify any parsed header fields and supports four types

of header field modification. The first one is to set a constant value

that will be set in template packets by switch CPU. The second one

is to set the header field with a given value list. The editor maintains

a packet ID for each template packet with registers, and the packet

ID adds 1 when the template packet is replicated. Then, the editor

provides a table matching the packet ID and setting the field with

the value indexed by the packet ID. For example, let us assume a

task that sets the TCP source port to 80, 81, 82 sequentially. If the

packet ID is 2, the editor will set the TCP source port to 81 and

increment the packet ID to 3.

The third one is to set the field to an arithmetic progression.

The editor records the value with registers and performs adding

or subtracting over the value every time. The last one is to gen-

erate random values according to a certain distribution, such as

normal distribution. P4 only supports a uniform random generator,

i.e. modify_field_rng_uniform. We propose to implement inverse

transformation method [66] with two tables. Through the inverse

transformation method, HTPS can generate values based on arbi-

trary distributions as long as the cumulative distribution function

is provided. Furthermore, the evaluation in §7 shows that HTPS

can emulate different distributions with great accuracy.

Compiling packet stream triggers to HTPS. In HyperTester , a

task could have multiple packet stream triggers, each of which cor-

responds to a template packet. To compile a packet stream trigger,

we should generate template packets, mcast engine configurations,

rate control code of the replicator, and packet modification code of

the editor. First, as for template packet generation, we initialize the

packet length, packet payload, and packet headers as specified by

payload, pkt_len, and the initial values of header fields. Second, we

configure the mcast group for the corresponding template packets

and mcast destination port according to port. Third, we generate the

rate control code according to interval, which defines the timeout

threshold of the replicator timer. Fourth, we generate the header

modification tables for each set primitive, and then arrange the

generated tables to process test packets sequentially.

Figure 4: Accurate distinct and reduce query.

5.2 HyperTester Packet Receiver

HyperTester Packet Receiver (HTPR) has two primary functions,

i.e. querying packet statistics and extracting trigger records for

HTPS from received packets. In this section, we focus on the first

function while §5.3 shows the other one. As for querying packet

statistics, HyperTester adopts the same query primitives and the

similar compilation method of Sonata [55]. However, Sonata imple-

ments distinct with Bloom Filter [67] and reduce with Count-Min

Sketch [68], which compromises accuracy inevitably.

To improve querying accuracy, HyperTester redesigns reduce and

distinct with the counter-based algorithm [31, 69] instead of the

sketch-based algorithm used by Sonata [55]. At the high level, Hy-

perTester stores the packet header key (e.g. TCP five tuples) and

the corresponding counter in registers for each flow. If a packet

matches the header key, some action (e.g. addition) will be executed

over the counter. To save memory space, HyperTester stores the

partial packet header key that is a digest generated via hashing the

complete header key. The counter-based algorithm is more accurate

than the sketch-based algorithm in terms of monitoring per-flow

statistics at a cost of low memory efficiency. However, existing

counter-based algorithms cannot guarantee complete accuracy due

to false positives [49]. To guarantee complete accuracy and improve

memory efficiency, HyperTester proposes exact key matching and

cuckoo hashing, as shown in Figure 4.

False positive avoidance with exact key matching. To guaran-

tee complete accuracy, we propose to eliminate false positives based

on the following observation. The global header space of packets

under querying in HyperTester is predictable, and the test packet

headers are enumerable. As sent packets are proactively generated

by HyperTester , we can enumerate the packet headers that will ap-

pear in HyperTester before the testing tasks start. This observation

cannot apply to Sonata as it monitors normal traffic whose header

space is non-predictable. Therefore, we can calculate all the false

positives for each testing task. Then, we can use a table to execute

exact matching over original header fields and resolve false posi-

tives. If a packet hits the table, the header key of the packet collides

with another packet, i.e. leading to a false positive. HyperTester will

directly execute reduce or distinct primitives accurately. Otherwise,

packets go to cuckoo hashing for further processing. With the exact

key matching, HyperTester can completely remove false positives.

Furthermore, the false positive rate of the counter-based algorithm

is always small, implying that HyperTester only needs a small-sized

exact key matching table.

Memory efficiency improvement with cuckoo hashing. Cur-

rent counter-based algorithms [31, 69] on data planes perform sim-

ple hashing and evict collided keys to the control plane for further

processing. Hashing inevitably comes with limited memory utiliza-

tion, which is not acceptable for resource-constrained switching

ASIC. To improvememory efficiency, we propose to conduct cuckoo
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(a) Initial phase (b) Insert (X, 1) (c) Insert (Y, 1) (d) Final phase

Figure 5: An example of cuckoo hashing in RMT.

hashing [70]. However, due to limited programmability, implement-

ing cuckoo hashing is non-trivial for switching ASIC. To this end,

we design a key-value (KV) FIFO and use recirculated template

packets for popping key-value pairs from the FIFO. An example of

cuckoo hashing is shown in Figure 5. At the initial phase shown

in Figure 5(a), the packet x has keyx and calculates the indexes for

two positions, i.e. h1 and h2. If any position is empty, the key of x
will be inserted. Otherwise, the KV pair (X , 1) is pushed into the

FIFO. Then, as shown in Figure 5(b), the recirculated packet pops

(X , 1) and inserts its key into Array1. (A, 1) will be evicted and be

insert into Array2. Figure 5(c) and Figure 5(d) show another round

of inserting new flows. When the FIFO overflows or an old KV pair

(i.e. (G, 8)) is evicted from Array2, HTPR directly reports the KV

pairs to switch CPU via generate_digest

Component layout and data collection. HyperTester could de-

ploy the packet stream query at either the ingress pipeline or the

egress pipeline according to which traffic tomonitor. If a querymon-

itors the sent traffic, it should be deployed at the egress pipeline. If

a query monitors the received traffic, it should reside at the ingress

pipeline. There are two methods for test statistic collection. Firstly,

the push mode is to report data from the data plane to the control

plane via generate_digest. Secondly, the pull mode is to collect data

plane counters by switch CPU via the control plane API.

Compiling packet stream queries to HTPR. To compile packet

stream queries, HyperTester should generate P4 code for queries

and table entries for exact key matching. Query compilation is

similar to Sonata but differs in three aspects. First, as HyperTester

has different designs of reduce and distinct, HyperTester needs to

extract the global header space for the query, calculate false posi-

tives, and to install them into the exact matching tables. The header

space extraction is achieved via analyzing the set operations. For

example, the header space of set(tcp.dp, [80, 81, 82]) contains 80, 81,

and 82. If the hash values of packets with tcp.dp=80 or tcp.dp=81

collide, HyperTester puts either tcp.dp=80 or tcp.dp=81 in the exact

key matching table. Second, queries might be partitioned between

switching ASIC and CPU. Different from Sonata using Spark com-

puting clusters to execute CPU querying logic, HyperTester runs all

the CPU logic within switch CPU because HyperTester has a much

smaller workload than Sonata. In this manner, we can implement

HyperTester within one programmable switch.

5.3 Stateless Connection

To avoid storing connection states, HyperTester adopts the stateless

connection, which is also used by Zmap [1]. To be concise, Hy-

perTester generates packets according to received packets. A naive

Figure 6: Trigger FIFO between HTPS and HTPR.

approach to support stateless connection is to directly re-write

headers of the received packets (i.e. swap source IP and destination

IP) and forward them. However, the triggered packets might have

different lengths with the received ones. Due to the limited packet

header vector size, HyperTester falls short of changing the packet

length, which disables the naive approach. To address this issue,

HTPS is designed to interact with HTPR and generates packets ac-

cording to triggers extracted by HTPR. We design a trigger FIFO to

transfer trigger records from HTPR to HTPS, as shown in Figure 6.

As the template packet length is easy to control, the trigger FIFO

between HTPS and HTPR efficiently supports stateless connections.

5.4 HyperTester by Example

In this part, we utilize an example to let readers go through the

overall workflow of HyperTester . The task called web testing is to

emulate a certain number of clients who request a web page from

HTTP servers, and Table 4 presents the NTAPI code for web testing.

Next, we show how HyperTester executes web testing step by step.

• Operators develop the triggers and queries for web testing with

NTAPI. There are six triggers that emit or acknowledge packets.

The queries can be categorized into two types. One (e.g. Qw
1 ) is

for capturing specific packets for stateless connections, while the

other one (e.g. Qw
5 ) is for collecting test statistics.

• Taking triggers and queries as input,HyperTester generates the P4

program, table entries, and template packets. Then, HyperTester

configures the switch with the generated materials.

• Suppose that the task creates 100K new clients per second. Then,

HyperTester configuresTw1 to generate SYN packets whose inter-

departure interval is 10us, and the sequence number is 1.

• Qw
1 monitors SYN+ACK packets and transfers the record to Tw2 ,

and Tw2 generates ACK packets with IP addresses, TCP ports,

sequence numbers and so forth from trigger records. For exam-

ple, if the destination port of an SYN+ACK packet is 4096, Tw2
generates an ACK packet whose source port is 4096.

• Tw3 is also triggered by Qw
2 and generates PSH+ACK packets

whose payload carries an HTTP request. The second query mon-

itors ACK packets with data from servers and triggers Tw4 to

acknowledge the data packets.

• For connection release, on the one hand,Qw
3 monitors ACK pack-

ets whose acknowledge number is beyond a threshold and trig-

gers Tw5 to generate FIN packets. We assume that the web page
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Tw1 = triддer ().set([dip,dport ,proto, f laд, seq_no], [X , 80, tcp, SYN , 1]).set(sip, ranдe(1.1.0.1, 1.1.1.0, 1))
.set(sport , ranдe(1024, 65535, 1)).set(interval , 10us)

Qw
1 = query(). f ilter (tcp_f laд == SYN +ACK)

Tw2 = triддer (Qw
1 ).set([dip, sip,dport , sport , tcp_f laд, seq_no,ack_no],

[Qw
1 .sip,Q

w
1 .dip,Q

w
1 .sport ,Q

w
1 .dport ,ACK ,Q

w
1 .ack_no,Q

w
1 .seq_no + 1])

Tw3 = triддer (Qw
1 ).set([dip, sip,dport , sport , tcp_f laд, seq_no,ack_no],

[Qw
1 .sip,Q

w
1 .dip,Q

w
1 .sport ,Q

w
1 .dport , PSH +ACK ,Q

w
1 .ack_no,Q

w
1 .seq_no + 1]).set(payload, ”GET index .html”)

Qw
2 = query(). f ilter (tcp_f laд == ACK).reduce(f unc = sum). f ilter (count < 5)

Tw4 = triддer (Qw
2 ).set([dip, sip,dp, sp, tcp_f laд, seq_no,ack_no],

[Qw
2 .sip,Q

w
2 .dip,Q

w
2 .sp,Q

w
2 .dp,ACK ,Q

w
2 .ack_no,Q

w
2 .seq_no + 1])

Qw
3 = query(). f ilter (tcp_f laд == ACK).reduce(f unc = sum). f ilter (count >= 5)

Tw5 = triддer (Qw
3 ).set([dip, sip,dport , sport , tcp_f laд, seq_no,ack_no],

[Qw
3 .sip,Q

w
3 .dip,Q

w
3 .sport ,Q

w
3 .dport , FIN ,Q

w
3 .ack_no,Q

w
3 .seq_no + 1])

Qw
4 = query(). f ilter (tcp_f laд == FIN )

Tw6 = triддer (Qw
4 ).set([dip, sip,dport , sport , tcp_f laд, seq_no,ack_no],

[Qw
4 .sip,Q

w
4 .dip,Q

w
4 .sport ,Q

w
4 .dport , FIN +ACK ,Q

w
4 .ack_no,Q

w
4 .seq_no + 1])

Qw
5 = query(). f ilter (tcp_f laд == SYN +ACK).reduce(f unc = sum)

Table 4: The web testing application running upon HyperTester. sip, dip, sport, and dport respectively stand for the source IP

address, the destination IP address, the source TCP port, and the destination TCP port.

Figure 7: FIFO implementation. The blue solid line and the

dashed orange line respectively denote the two FIFO opera-

tions, i.e. enqueue and dequeue.

can be loaded in 5 packets (count data packets only). On the other

hand, Qw
4 monitors FIN packets from servers and triggers Tw6 to

generate acknowledgment packets.

• HyperTester could also install some queries (e.g. Qw
5 ) to moni-

tor the HTTP server performance metrics, such as answered

connections and delay of HTTP responses. These performance

monitoring queries are agnostic to the above queries for stateless

connections and upload data to switch CPU.

6 IMPLEMENTATION AND LIMITATION

6.1 Implementation of HyperTester

First of all, we show the implementation of FIFO in HyperTester .

FIFO Implementation. In HyperTester , we use FIFO for cuckoo

hashing as well as for the interaction between HTPR and HTPS.

FIFO is important for HyperTester , but implementing a FIFO with

acceptable resource usage is non-trivial. To address this issue, we

present a FIFO implementation shown in Figure 7. Each FIFO is

composed of two parts. The first part is the 32-bit counters for

queue front and queue rear. For the two counters, there are two

operations, i.e. read and update. read returns the counter value

without changing the counter, while update increments the counter

by 1 and returns the updated value. Note that update of the rear

counter depends on the value of the front counter to prevent queue

underflows. Currently, our FIFO implementation in HyperTester has

a limitation that it cannot guarantee freedom of queue overflows.

In our future work, we will optimize the dequeue speeds (i.e. the

recirculation speed of template packets) to prevent queue overflows.

Second, we discuss some feasibility considerations of implement-

ing HyperTester on realistic P4 targets.

Limited implementation of standard P4 primitive actions.

Throughout the design of HyperTester , we have used several stan-

dard primitive actions provided by P4. Although these primitive

actions are mandatory, P4 targets may implement them with com-

promises. Wemainly encounter two types of compromises. The first

one is the parameter limitation. The parameters of some primitive

actions are more limited than what the P4 specification defines. For

example, HyperTester assumes that lower_bound and upper_bound

inmodify_field_rng_uniform are arbitrary integers, but in some tar-

gets, lower_bound must be 0, and upper_bound must be power of

two to simplify hardware implementation. To address this issue,

HyperTester limits the scope of generated values to the power of

two and further increments the generated value with a specific

offset. The second one is the control limitation, i.e. some primitive

actions can only be invoked in the ingress pipeline or the egress

pipeline. For example, recirculate is only supported by the egress

pipeline in the P4 specification but can only be invoked by the

ingress pipeline in some P4 targets. Fortunately, the accelerator, the

only one component of HyperTester relying on recirculate, can be

placed either at the ingress pipeline or the egress pipeline.

Limited recirculation capacity. There could be multiple tem-

plate packets for one testing task. Thus, HyperTester requires re-

circulating multiple packets simultaneously. We refer the maxi-

mum number of recirculated packets as the recirculation capacity.

Inevitably, the recirculation capacity of switching ASIC is finite,

which limits the number of template packets in one testing task. To

address this issue, we could implement the recirculation function

via configuring a port to the loopback mode. Then, we recirculate

packets by just forwarding the packets to the loopback port. If there
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are more template packets, we can configure more ports to the loop-

back mode and amortize template packets among the ports. In this

manner, HyperTester trades the available bandwidth and ports for

the feasibility of complex testing tasks.

Errors innetwork testing tasks defined byNTAPI. Usersmight

make some errors or conflicts when using NTAPI to specify their

testing intents. For example, users might specify the TCP port with

a value that is larger than 65536. During the NTAPI compilation,

HyperTester will reject the mistaken testing tasks. Moreover, the

test task might be too complex to be implemented in the switching

ASIC, e.g. requiring too many physical stages. HyperTester will re-

ject the testing tasks that cannot be accommodated by switching

ASIC. Our future work will focus on optimizing testing task compi-

lation to accommodate as many testing tasks with switching ASIC

as possible.

6.2 Limitation of HyperTester

Template-based packet generation and stateless connections pro-

vide great generality for HyperTester to support various network

testing tasks, and they enable HyperTester to reconcile programma-

bility, resources, and high performance for network testing. How-

ever, they come with some limitations, which make it hard for

HyperTester to support some complex network testing tasks.

Limitation of template-based packet generation. Template-

based packet generation requires that (1) the network testing task

can provide a small number of template packets, and (2) the task

only needs to conduct the actions supported by switching ASIC

over template packets. Thus, template-based packet generation can-

not support the tasks that cannot extract template packets or need

complex actions. For example, packet trace replaying generates

packets according to the captured traffic, and it is hardly possi-

ble to perform template packet extraction over real-world traffic.

Furthermore, some testing tasks, e.g. IPSec testing, might require

decryption or encryption over the payload, which is too complex

for switching ASIC.

Limitation of stateless connections. If connection state transi-

tions in a network testing task can be explicitly triggered by packets,

such as SYN and SYN+ACK for TCP handshaking, HyperTester can

use stateless connections to avoid storing connection states. How-

ever, HyperTester cannot support the tasks whose connection state

transitions are not triggered by packets. An example is to emulate

duplicated ACK behaviors when some packets are lost in TCP con-

nections. HyperTester cannot infer the information of lost packets

from arrived packets. For such tasks, HyperTester has to store states

for each connection on resource-constrained data planes, which

cannot scale.

7 EVALUATION

Testbed setup. We deploy HyperTester in the testbed shown in

Figure 8. The testbed is composed of two Tofino switches with 32

100Gbps ports and Intel Pentium 4-core 1.60GHz CPU as well as

two commodity servers equipped with Intel Xeon 12-core 2.4GHz

CPU and 64GB DRAM. NICs on both servers are DPDK-compatible.

The testbed has three types of cables, i.e. 100Gbps, 40Gbps, and

10Gbps. Moreover, we use the widely-used DPDK-based packet

Figure 8: Evaluation testbed with two Tofino switches and

two commodity servers.

generator, MoonGen [5] as the evaluation baseline of HyperTester .

We acknowledge that HyperTester is a hardware-based solution,

while MoonGen is a software-based one. Thus this comparison is

unfair. Ideally, we would also compare HyperTester with hardware-

based packet generators. However, these are commercial solutions

for network testing, and we did not have access to them.

Evaluation objectives. We evaluate HyperTester with five objec-

tives. First, we demonstrate the expressibility of NTAPI by com-

paring NTAPI with Lua used by MoonGen (§7.1). Second, we eval-

uate the overall performance of HyperTester in terms of through-

put and rate control accuracy (§7.2). Third, we perform micro-

benchmarking on HyperTester components, including the acceler-

ator, the replicator, and test statistic collection (§7.3). Fourth, we

conduct the quantitative analysis on the resource usage and the

cost of HyperTester (§7.4). Finally, we study two cases, including

delay measurement and SYN flood attack emulation (§7.5).

Result overview. We summarize a portion of results below.

• Expressibility: NTAPI can effectively facilitate developing net-

work testing tasks and reduce the code size by over 74.4% when

comparing with Lua used by MoonGen.

• Accelerator: The round trip time of template packets is less

than 590ns in the accelerator, and a testing task can accelerate

89 64-byte template packets with the accelerator simultaneously.

• Replicator: The mcast engine brings around 400ns delay for

replicated packets and introduces about 4ns jitters on inter-

departure time of replicated packets.

• Throughput: HyperTester can generate 400Gbps traffic with ar-

bitrary packet sizes at line rate in our testbed.

• Rate control accuracy: HyperTester provides much better rate

control accuracy than MoonGen, and the errors of HyperTester

are over one order of magnitude smaller than those of MoonGen.

• Equipment and power cost: HyperTester can save as much as

$40150 per Tbps and 9225W per Tbps when comparing with

MoonGen running on servers equipped with 8-core CPU.

• Resource usage: The packet stream trigger consumes a small

amount of data plane resources, while the resource usage of

querying is moderate when compared with switch.p4 [71].

• SYN flood attack emulation: HyperTester implemented on a

6.5Tbps programmable switch can emulate around 5.2×106 SYN

flood attack agents.

7.1 Expressibility of NTAPI

In this part, we present how NTAPI simplifies developing network

testing tasks. We testify the expressibility of NTAPI via comparing

the lines of NTAPI code (LoC) with the generated P4 code and the



CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Y. Zhou et al.

64 96 12
8
16
0
19
2
22
4
25
60

50

100

150

Th
ro
ug

hp
ut

(M
pp

s) HyperTester: 100Gbps 40Gbps
MoonGen: 1Core 2Cores
Line Rate: 100Gbps 40Gbps

(a) Mpps vs. Packet sizes

64 96 12
8
16
0
19
2
22
4
25
60

20

40

60

80

100

Th
ro
ug

hp
ut

(G
bp

s)

(b) Gbps vs. Packet sizes

Figure 9: Single-port throughput comparison.
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Figure 10: Multi-port throughput comparison.

MoonGen Lua code when implementing the same applications. To

guarantee fairness, the counted lines of generated P4 code only

include control flow, tables, and actions. We use four applications

whose code is at [37]. As shown in Table 5, NTAPI only needs

around ten LoC to specify various testing tasks, while MoonGen

requires 3x to 6x more LoC, indicating that NTAPI comes with

strong expressibility. When comparing with P4, the LoC of NTAPI

is over one order of magnitude lower, revealing that NTAPI can

simplify developing network testing tasks significantly.

7.2 Marco-benchmark of HyperTester

In this part, we evaluate the overall performance of HyperTester

in terms of throughput, the accuracy of rate control, and random

number generation.

Throughput. We compare the throughput ofHyperTester (HT) and

MoonGen (MG) when changing generated packet sizes and port

numbers. First, we use HyperTester to generate small-sized packets

for a single port whose speed can be 100Gbps and 40Gbps in our

testbed and use MoonGen for a single 40Gbps port. As shown in

Figure 9(a) and Figure 9(b), HyperTester can generate packets at

line rate, while MoonGen cannot generate small-sized packets with

one core at line rate. Second, we add available ports for Hyper-

Tester and available CPU cores for MoonGen (using eight 10Gbps

ports) to show the multi-port throughput. As shown in Figure 10(a)

and Figure 10(b), HyperTester keeps line-rate packet generation in

our testbed, while MoonGen needs one core for 10Gbps and can

generate up to 80Gbps with 8 CPU cores.

Applications NTAPI P4 MoonGen Lua

Throughput Testing 9 172 43

Delay Testing 10 134 71

IP Scanning 7 133 48

SYN Flood Attack 5 94 63

Table 5: Lines of code for different applications.
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Figure 11: Rate control accuracy for 40Gbps.
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Figure 12: Rate control accuracy ofHyperTester for 100Gbps.
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Figure 13: Accuracy of random number generation.

Rate control. We compare the rate control accuracy of Hyper-

Tester and MoonGen when changing packet generation speeds

(from 100Kpps to 100Mpps) and packet sizes. In the experiments,

MoonGen is configured to use the hardware rate control function of

NIC. We conduct the experiments on 40Gbps and 100Gbps ports. To

quantify rate control accuracy, we use three error metrics, including

mean absolute error (MAE), mean absolute difference (MAD), and

root mean squared error (RMSE), and the metrics are calculated

based on inter-departure time. Figure 11 comparesHyperTester with

MoonGen for 40Gbps. As shown in Figure 11(a) and Figure 11(b),

all the errors of HyperTester are over one order of magnitude lower

than MoonGen, indicating that HyperTester has better rate control

accuracy. Figure 12 shows rate control errors of HyperTester for

100Gbps. As shown in Figure 12(a) and Figure 12(b), the packet gen-

eration speed does not bring an obvious influence on rate control

accuracy, but the errors grow with the size of generated packets.

Random number generation. HyperTester employs the inverse

transformation method to realize random number generation en-

tirely on data planes. We show the accuracy of random number

generation through the Q-Q plot, and we use HyperTester to gen-

erate two well-known distributions, i.e. normal distribution and

exponential distribution. Based on Figure 13(a) and Figure 13(b), we

can reasonably claim that HyperTester can generate random num-

bers according to specified distributions with very strong similarity

and generality.
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Figure 14: Evaluation of the accelerator.
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Figure 15: Evaluation of the replicator.

7.3 Micro-benchmark of HyperTester

In this part, we conduct micro-benchmarking experiments on Hy-

perTester components, including the accelerator, the replicator, data

collection, and exact key matching.

Accelerator. We present how fast the accelerator speeds up tem-

plate packets via round trip time (RTT) and how many template

packets a testing task can have (accelerator capacity). In the ex-

periments, we change the size of template packets from 64 bytes

to 1500 bytes. Figure 14 shows the experiment results of RTT and

capacity. As for RTT, we present the average RTT as well as RMSE

when letting a template packet recirculate for 106 times. As shown

in Figure 14(a), a 64-byte packet can complete a loop within 570ns

while the RMSE is lower than 5ns. Next, we get accelerator capacity

in the switching ASIC via dividing the average RTT by minimal

arrival interval between template packets. The recirculation band-

width is no less than 100Gbps, and the minimal arrival interval for

the 64-byte packet is 6.4ns. As shown in Figure 14(b), the acceler-

ator can hold 89 64-byte template packets. We can use loopback

ports to linearly extend the accelerator capacity at a price of overall

bandwidth.

Replicator. As for the evaluation of the replicator, we measure

the mcast engine delay, which might influence the accuracy of rate

control. Figure 15 presents the impact of packet sizes, mcast ports,

and mcast speed on the multicast delay. As shown in Figure 15(a),

64-byte packets have about 389ns multicast delay, and the delay

increases by about 65ns when the packet size rises to 1280 bytes.

The RMSE is lower than 4.5ns, indicating small inter-arrival time

jitters and accurate rate control. Figure 15(b) shows the mcast delay

of 64-byte packets, revealing that multicast ports and speed have a

close-to-zero impact on the mcast delay.

Test statistic collection. Test statistics can be continuously pushed

by switch ASIC or pulled by switch CPU at runtime. Thus, we eval-

uate pull speed and push bandwidth of test statistics, as shown in

Figure 16. First, we measure received messages emitted by gener-

ate_digest in switch CPU when changing the message size from 16
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Figure 16: Evaluation of test statistic collection.
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Figure 17: Evaluation of exact key matching.

bytes to 256 bytes. As shown in Figure 16(a), the goodput grows

with the message size and can achieve 4.5Mbps. Second, we mea-

sure the delay when employing switching CPU to query different

numbers of counters. In the experiment, we compare two query-

ing methods. The first one is to query the counters one by one

(w/o O), while the other is batch-based querying (w/ O). As shown

in Figure 16(b), switch CPU could get 65536 counters within 0.2s

under the batch-based querying, which largely outperforms the

one-by-one querying method.

Exact key matching. We measure the number of required exact

key matching entries when the overall flow number (i.e. global

space) and the hashing array size change. We execute each experi-

ment for 20 times, and Figure 17 shows the data points. As shown

in Figure 17(a), when the digest size is 16bits, exact key matching

only needs no more than 3000 entries for over 2M flows, consum-

ing 39KB memory. Figure 17(b) shows that the 32-bit digest could

effectively reduce required entries at the cost of doubling memory

usage when compared with the 16-bit digest.

7.4 Cost and Resource Analysis

In this part, we evaluate power cost, equipment cost, and data plane

resource consumption of HyperTester .

Cost. We present a comparative analysis of equipment and power

cost. According to [30], a programmable switch costs about $3600

and 150 Watts (W) per Tbps, while an 8-core CPU server costs

about $3500 and 750W under full load. Based on Figure 10(b), an 8-

core CPU server could generate 80Gbps traffic. Based on the above

data, we analyze the cost and present the results (normalized by

throughput) in Table 6. HyperTester running on a 6.5Tbps switch

Metrics (per Tbps) Equipment Cost Power Cost

MoonGen $43750 9375W

HyperTester $3600 150W

HyperTester Saving $40150, 9225W per Tbps

Table 6: Power and equipment cost comparison.
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Category Metric Match Crossbar SRAM TCAM VLIW Hash Bits SALU Gateway

Trigger

accelerator 0.25% 0.36% 0% 0.71% 0.62% 0% 0%

replicator(0) 0.13% 0.71% 0% 1.41% 0.62% 0% 0%

replicator(100) 0.98% 2.12% 0% 2.82% 1.90% 5.56% 1.43%

set(tcp.dp,range(80,100,2)) 0.74% 1.06% 2.16% 2.82% 0.62% 0% 0%

set(tcp.dp,rand(’E’,128,16)) 0.74% 1.06% 3.23% 2.12% 1.23% 0% 0%

Query

filter(tcp.flag==SYN) 0.12% 0% 0% 0% 0.37% 0% 1.43%

distinct(keys={5-tuple}) 9.3% 12.0% 0% 12.0% 13.5% 33.4% 10%

reduce(keys={ipv4.dip},func=sum) 13.3% 20.5% 4.3% 15.5% 13.5% 44.5% 8.6%

Table 7: Hardware resources consumed by HyperTester components. The values are normalized by switch.p4.

can replace 81 8-core CPU servers while reducing both equipment

and power cost by over one order of magnitude.

Resource usage. We measure the data plane resource usage when

deploying different NTAPI statements on Tofino switches, and re-

sults are normalized by the resource usage of switch.p4 [71], as

shown Table 7. The accelerator consumes a small number of re-

sources, occupying less than 1% of switch.p4. The replicator con-

sumes different resources under different inter-departure time con-

figurations. As for packet stream queries, we evaluate three types

of statements, including filter, distinct, and reduce. To guarantee ac-

curacy and improve memory efficiency, distinct and reduce support

exact key matching and KV FIFO, which consume additional SRAM

and SALU. Note that switch.p4 is designed for stateless packet for-

warding, so it consumes a small count of SALU, which makes the

normalized SALU usage of distinct and reduce seem large. In fact,

distinct and reduce only consume a small portion of overall SALU

resources.

7.5 Case Study

In this part, we study two cases including delay testing and DoS

attack emulation to show the benefits of HyperTester .

Delay testing. We implement the delay testing application [37] on

both HyperTester and MoonGen to test Tofino switch forwarding

delay. We can reasonably infer that the smaller measured delay is,

the better test accuracy is. We conduct two types of delay testing

experiments shown in Figure 18. The first one is to get the delay via

the timestamp piggybacked in packets, while the other is to store

the delay states. For timestamp-based delay testing, we can use both

hardware (HW, NIC for MoonGen, and MAC for HyperTester) and

software (SW, CPU for MoonGen, and P4 pipeline for HyperTester)

to piggyback timestamps. Figure 18(a) shows the timestamp-based

delay testing results. We can see that HW timestamps have the best

accuracy, and the accuracy of HyperTester-SW is a little lower than

HW, while MoonGen-SW performs worst and deviates from the

HW results by over 3x. As for the state-based experiments shown

in Figure 18(b), HyperTester keeps a similar accuracy as timestamp-

based testing and outperforms MoonGen.

Metrics Testbed Estimation (80%)

Throughput 400Gbps 5.2Tbps

SYN Packets 595Mpps 7737Mpps

# emulated attack agents 4 × 105 5.2 × 106

Table 8: Analysis on SYN flood attack emulation.
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Figure 18: Delay testing results.

Attack emulation. We implement the SYN flood attack emula-

tion [37] on HyperTester . The attack emulation is of great signif-

icance for evaluating the reliability of distributed systems. We

measure the throughput of generated SYN packets on our testbed

with four 100Gbps ports. Moreover, we estimate that a 6.5Tbps

Tofino switch can achieve up to 80% of the total 6.5Tbps bandwidth

when generating 64-byte SYN packets. Furthermore, we assume

that a distributed attack agent can generate up to 1Mbps SYN flood

traffic [72]. Table 8 indicates that HyperTester implemented on a

6.5Tbps switch can emulate 5.2×106 attack agents.

8 CONCLUSION

In this paper, we present a novel network tester, HyperTester , which

empowers many significant network testing applications. Driven

by new-generation programmable switches, the core idea of Hy-

perTester is to co-design switching ASIC and switch CPU for high-

performance, flexible, and low-cost network testing. HyperTester

provides several key designs to overcome the challenges of imple-

menting network testing with programmable switches, including

template-based packet generation, stateless connections, and the

counter-based algorithm. Our experiments testify that the designs

of HyperTester work efficiently on programmable switches with

acceptable resource overheads.
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