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Abstract—P4 is a domain specific language designed to define
behaviors of the programmable data plane. It facilitates offload-
ing hardware-suitable Network Functions (NFs) to a data plane.
Consequently, NFs can maximally benefit from high performance
of hardware devices, meanwhile more CPU power can be reserved
for user applications. However, since the programmable data
plane provides an NF with an exclusive network context, different
NFs cannot operate on the same data plane simultaneously.
Besides, it is hardly possible to dynamically reconfigure pro-
grammable network devices without interrupting the operation
of a data plane.

Therefore, we propose HyperV, a high performance hypervisor
for virtualization of a P4 specific data plane, to provide both non-
exclusive and uninterrupted features.We implemented HyperV
based on a P4-BMv2 target and a DPDK target respectively.
Then we evaluated BMv2-target HyperV by comparing with
Hyper4, a recently proposed hypervisor, and evaluated DPDK-
target HyperV by comparing with PISCES and Open vSwitch.
Results show that BMv2-target HyperV averagely prevails over
Hyper4 2.5x in performance while reducing resource usage by
4x. DPDK-target HyperV performs comparably to Open vSwitch
and PISCES, with the worst case of a throughput penalty in less
than 7%, while providing a powerful capability of virtualization
which neither of them provides.

I. INTRODUCTION

Software Defined Networking (SDN) has started an era
providing network operators with a programmable control over
their networks. P4 [1] and POF [2] are Domain Specific
Languages (DSLs) that intend to define the behavior of a
data plane. With the help of DSLs and programmable network
devices, in Network Function Virtualization (NFV) scenarios,
data plane affiliative Network Functions (NFs) can be of-
floaded as data plane programs, e.g. offloading a TCP monitor
[3], to save CPU power for user applications and benefit
from high performance and parallel acceleration of network
devices. Most recent researches and industrial cases, including
ClickNP [4] and [5], [6] etc., also confirm this offloading
technique can significantly improve performance of networks.
With the foreseeable flourish of DSLs and programmable
network devices in the future, more and more suitable NFs
could be considered shifting onto data planes for purpose of
improving network performance and device efficiency.

However, several barriers from programmable network de-
vices hinder this promising offloading technique. Each data
plane provided by a P4-capable device represents a view of the
physical data plane, which means a data plane is exclusively
operated by a program once configured. And this leads to the

result that various programs cannot run simultaneously and
share underlying resources in a non-exclusive way on a single
data plane. However, in many NFV scenarios, with the aim of
supporting multi-tenancy and improving device efficiency, it is
necessary to run diverse programs on a given programmable
network device.

Additionally, due to intrinsic constraints of programmable
network devices, it is hardly possible to dynamically recon-
figure a network device without interrupting the operation of
a data plane. According to [4] and [7], reconfiguration of a
programmable network device usually depends on the size and
design of the chip ranging from tens of milliseconds to several
minutes. Besides, device states and table entries will get lost
due to this interruption. Therefore, in order to maintain the
consistency of network states, it is exceedingly necessary to
provide operators with an uninterrupted way to dynamically
load programs onto data planes.

Virtualization of a programmable data plane (PDP) is one
of many possible solutions to these problems. By virtualizing
a PDP, different virtual PDPs can be created on one single
physical PDP, which has the similar concept of virtual ma-
chines in computer virtualization. In this way, programs can be
dynamically instantiated/migrated/deleted at runtime on virtual
PDPs without interrupting the physical PDP, and different
virtual PDPs can share the same physical PDP simultaneously.
Additionally, in order to implement virtualization, a hypervisor
of PDPis designed to interpret programs and manage virtual
PDPs on top of a physical PDP.

A recent research, Hyper4 [8], proposed a potential way of
virtualizing a PDP. In Hyper4, a hypervisor-like program is
designed to provide partial virtualization of P4 data plane, so
that certain programs can be equivalently emulated in Hyper4
to achieve non-exclusive and uninterrupted features. However,
Hyper4 has several problems as a data plane hypervisor. (i)
Hyper4 lacks a structural design and well-abstracted models
to interpret P4 programs. (ii) Hyper4 is partial virtualization
of P4 specific data plane, and several essential P4 language
elements such as if-else statement with boolean expression,
control flow, are absent. Therefore, this defect make Hyper4
not adaptable for most P4 programs. Additionally, (iii) Hyper4
suffers from a severe performance penalty due to the heavy use
of resubmitting actions in the parser and complex inner control
logic. Lastly, (iv) Hyper4 also suffers from an excessive usage
of hardware resources due to its hard-coded implementation,
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which makes it not applicable to programs with an arbitrary
number of stages.

Inspired by Hyper4, we make a step further and propose
HyperV, a hypervisor with a structural design and well-
abstracted models, to fully virtualize a P4 data plane while
providing high performance and efficient use of hardware
resources. In HyperV, we proposed several novel techniques,
including control flow sequencing, dynamic stage mapping,
to achieve full virtualization of P4 data plane. Therefore,
arbitrary P4 programs can be instantiated on a virtual PDP
transparently. Additionally, we abstracted a model of stage slot
to hold any number of stages. In this way, different stages
in different programs can be allocated in the same slot to
share the hardware resources (e.g. the match-action tables)
and dramatically improve efficiency. Moreover, techniques of
rapid parsing and pipeline bypassing are used to reduce the
performance penalty. Hence, HyperV can greatly attain the
balance between virtualization and performance. Apart from
the models mentioned above, HyperV also provides operators
with a set of operating models, such as a program, a stage, to
support a flexible way of composing NFs.

We have built two proof-of-concept prototypes of Hy-
perV based on the P4-BMv2 target and the DPDK target
respectively. We compared BMv2-target HyperV with Hyper4.
Results show that BMv2-target HyperV is averagely 2.5x
performance advance of Hyper4 in terms of bandwidth and
latency while reducing 4x resource usage. Then we evalu-
ated DPDK-target HyperV by comparing with state-of-the-art
software switches, PISCES and Open vSwitch. DPDK-target
HyperV can process 64-byte packets at the speed of 42.14
million packets per second (Mpps) with 4 CPU cores and has a
minor throughput penalty when comparing with Open vSwitch
at 45.71 Mpps and PISCES at 45.95 Mpps. And for forwarding
large packets, HyperV can maintain the line rate of 40 Gbps.
Meanwhile, DPDK-target HyperV can keep the forwarding
latency lower than 9 µs with packets of arbitrary size, and
above 90% of 64-byte packets can pass through HyperV in
less than 7 µs.

In this paper, we make the following contributions:
• We designed HyperV as a hypervisor that fully virtualizes

the P4 data plane while maintaining high performance
and resource efficiency.

• We proposed an architecture of a programmable data
plane hypervisor and a virtual PDP to represent the virtual
view of a physical PDP.

• We proposed several novel techniques and creative mod-
els to facilitate virtualization of a PDP.

• We implemented a BMv2-target and a DPDK-target Hy-
perV respectively, and evaluated them by comparing with
their counterparts. Results show that HyperV can achieve
virtualization with a minor performance penalty.

We will discuss the related work in next section, then show
some P4 language basics in Section III. In Section IV, we will
illustrate the design of HyperV and some key techniques as
well as models. In Section V, we will evaluate BMv2-target
HyperV and DPDK-target HyperV respectively. After that we

will discuss capability and hardware feasibility of HyperV in
Section VI, and make a conclusion in Section VII.

II. RELATED WORK

To the best of our knowledge, Hyper4, firstly, proposed
a hypervisor-like program on a P4 specific PDP, and is the
only research that shares the same motivation with HyperV
in providing virtualization features. In spite of problems we
mentioned in Section I, Hyper4 does show the potential to
introduce a hypervisor onto the programmable data plane and
the useful features provided by virtualization.

Other researches related with offloading, e.g. [9], [4], [10],
[11], have been designed to provide both high performance
and programmability based on the FPGA programmable data
plane. Some of them could meet the non-exclusive or unin-
terrupted demand to a certain extent. However, they either
lack of well-abstracted models for virtualization or lack of
a hypervisor to uniformly decouple the programs from the
physical data planes. For example, in ClickNP, a set of well-
defined elements, similar with elements in Click router [12],
are implemented as built-in functions in FPGA and can be
flexibly composed by operators to achieve complex processing.
However, since ClickNP does not take virtualization into
consideration, the running NF instance exclusively controls
the physical data plane.

Authors in [10] proposed a virtualized FPGA data plane
letting multiple virtual routers sharing the physical data plane
simultaneously to assist network virtualization. It leads to a
limited non-exclusive feature. However, the NF in [10] is
confined to a fixed router function and the reconfiguration
of a new NF will interrupt the data plane. Based on the
FPGA hardware device, [11] took a step forward and designed
the virtual data plane with a pipeline of match-action tables
as a more general data plane to provide flexibility. The key
distinction between our work and [11] is that HyperV is
devoted to designing a systematic approach to virtualize the
protocol-independent and programmable data plane. And [11]
mainly focuses on slicing the OpenFlow-like data plane to
afford an isolation feature.

III. BACKGROUND OF P4 LANGUAGE BASICS

P4, Programming Protocol Independent Packet Processor,
is a recently proposed high level language for defining the
behavior of a data plane. A P4 program mainly defines (i)
a parser, containing a collection of protocol formats and
corresponding state machines to parse headers; (ii) a Direct
Acyclic Graph (DAG) of match-action stages, named control
flow, to define how packets are processed; and (iii) a deparse
process to reconstruct packets.

Practically, the workflow of defining a P4 capable device
starts with a P4 program. Firstly, operators write and compile
a P4 program through a front end compiler into a high-
level intermediate representation known as HLIR [13]. Then
a back end compiler, e.g. p4c-bmv2 [14] or P4-to-EBPF [15],
will adapt the program into different targets including FPGA,
CPU, etc. Finally, through a runtime controller, operators can
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Figure 1. HyperV design overview.

populate table entries into match-action tables on the data
plane and make the target device process packets as they are
pre-defined. Swapping a new logic into a P4 target should
repeat the above procedure, but all network states will be lost
due to interruption of the data plane, which might violate
the running policies and degrade performance of the whole
network.

In order to provide full virtualization of P4 specific data
plane, several language elements are concerned by HyperV: (i)
header parser; (ii) metadata, including standard metadata and
user-defined metadata; (iii) registers, meters, and counters, for
stateful processing of packets; (iv) match-action stages 1; each
stage contains one match-action table; (v) compound action,
including one or more primitive actions; and (vi) control
flow, which is composed of several stages along with boolean
expressions indicating stage branching.

IV. DESIGN OF HYPERV
A. Overview

Figure 1 shows the overall architecture of HyperV. HyperV
acts as a hypervisor on top of a physical P4 specific data plane
and provides a virtual view of underlying hardware resources
to upper programs. Operators can dynamically configure Hy-
perV to create a virtual PDP and instantiate a set of programs
on that particular virtual PDP without interfering with other
virtual PDPs. In addition, programs can be flexibly instantiated
and composed by an operator at runtime on one virtual PDP.

In order to let operators configure HyperV from the control
plane, we also design a dynamic compiler running in an SDN
controller. It can compile and analyze P4 programs created
by operators, then transform P4 language elements into data
plane models managed by HyperV, and dynamically allocate
resources such as program id, stage id, stage slot, and populate
tables on the virtual PDP.

In HyperV, we use several novel techniques and models to
achieve high performance as well as full virtualization of P4
language elements. In the following section, we will provide
details of several key models and techniques used in HyperV.

1We will use stage for short in the following paper.

B. Rapid Parsing
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Figure 2. Example of description header.

In a parser of a P4 program, operators can explicitly define
an arbitrary structure of a packet header and the corresponding
parsing logic of this header. Therefore, virtualizing a header
parser means that we must design a general parser being able
to parse arbitrary pattern of headers defined by operators. In
order to do so, Hyper4 designed a parser with a pipeline of
tables and heavily used resubmitting action to parse the header
layer by layer, and finally got the header as a whole. However,
this design encounters a significant performance penalty since
resubmitting is a heavyweight action and each packet suffers
from numbers of resubmitting actions.

In order to avoid a severe performance penalty while being
able to parse any pattern of packet headers rapidly, we design
a 4-byte description header (DH). A DH, as shown in Figure
2, encapsulates the original packet and explicitly identifies a
total length of both DH and the original header. It also contains
a virtual PDP-id that maps a packet to a virtual PDP. Since
in P4 language, a parser can automatically infer the variable
length of a member in a header structure by declaring the
total length of that header in another member of that header
structure. Through this technique, our general parser can view
the original header as a whole and infer it from the field in
DH without any resubmitting action.

Rapid parsing technique is a trade-off between performance
and space. However, we consider it as a reasonable way. Since
a general parser should be agnostic to any specific header
structure, the key purpose of a parser is to get the header
length. So it is more efficient to explicitly identify the length
than to parse packet layer by layer to calculate the length.

There is still one concern about implementation of this
”extra” DH. Hence, we provide three different ways of imple-
mentation to let operators themselves to weigh the balance.
First is an overlay method, where a DH can be implemented
by MAC-in-MAC, VXLAN, etc., and this method needs
an encapsulation mechanism. Second is by modification of
destination MAC, which is commonly used within data center
networks (e.g. [16]). Third is a transparent way, where each
packet will be normally parsed and matched by a unified
table to add a DH, then be resubmitted. Meanwhile, operators
need to populate some configuration tables when instantiating
programs on a virtual PDP.

C. Control Flow Sequencing

In a P4 program, a control flow is composed of a set of
stages and several boolean expressions. Stages can branch to
another stage depending on the result of a boolean expression.
Essentially, a control flow is a DAG where each node denotes
a stage and each edge represents the branch between stages.
So in order to virtualize a control flow, we have to interpret
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various DAGs into a unified pattern. Hence, as shown in
Figure 3, firstly (i) we decouple a match-action stage into three
fixed functional pipelines: condition binding pipeline, match
pipeline and action pipeline.

In the condition binding pipeline, we use 4 tables to emulate
the boolean expression bound with any particular stage in
control flows. This boolean result will decide whether the
packet should be processed by the following two pipelines
of the current stage, or it should be skipped the following
pipelines and branch to the next stage. Correspondingly, an
intrinsic metadata will be set to indicate the location of next
stage.

In the match pipeline, we classify the match fields in a
standard match-action table into three types: packet header,
standard metadata and user-defined metadata. Then we as-
semble the match pipeline with four tables, three of which
respectively contains each type of the match field, and the forth
one maps the combined match result to an action bitmap. In
this way, we avoid using an exceedingly large match field in
one table and reduce the TCAM pressure introduced by a large
match field. Besides, we also use a match bitmap to indicate
whether a table should be executed or skipped in a match
pipeline. This pipeline bypassing technique is frequently used
by various parts in HyperV to further improve performance.

An action bitmap indicates all primitives that should be en-
forced in a compound action and all primitive actions indicated
by an action bitmap will be executed orderly. Besides, we
also aggregate all primitive actions, so that an action pipeline
demands for a much less of tables to implement. Through an
action pipeline, HyperV can support a compound action with
an arbitrary number of primitives.

After decoupling a match-action stage, secondly (ii) we
use the topological sorting algorithm to convert a DAG into
a uniform linear sequence. Topological sorting can maintain
the internal dependency order between stages in a DAG and
transform arbitrary DAGs into a uniform pattern. Besides, each
stage is allocated with a unique stage id enabling branching
from one stage to another.
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Figure 4. Dynamic stage mapping.

D. Dynamic Stage Mapping

After control flow sequencing, HyperV manages to interpret
different DAGs into a uniform linear pattern. However, the
control flow in a P4 program may contain an arbitrary number
of stages. Therefore, HyperV faces the challenge of mapping
an unpredictable sequence of stages onto the hardware data
plane with limited resources. Inspired by the idea of virtual
memory mapping in the operating system, we designed the
dynamic stage mapping as shown in Figure 4.

Firstly, we abstracted a concept of stage slot which can
hold any number of stages. Notably, the stage here is a
decoupled stage described in Section IV-C. So mapping a
sequence of stages into a limited number of stage slots is
similar to mapping a virtual memory address to a limited
physical memory in the operating system.

Secondly, since each stage is allocated with a unique stage
id by the dynamic compiler. Therefore, addressing one stage
is by calculating stage id modulo the total number of stage
slots on a hypervisor. However, due to the restriction of P4,
a stage cannot branch back in order to prevent inner loops.
In some cases, if a control flow does have more stages than
slots, HyperV has no choice but to resubmit packets to resume
processing. Definitely, there exists a trade-off between slots
and resubmitting actions. It is better to determine the number
of slots based on resources of hardware devices and operators’
choices.

Based on the stage mapping technique, HyperV not only
supports the stage sequence with arbitrary length, but also
provides operators with an infrastructural model of the stage
slot. Through stage slot, operators can manage programs on
the virtual PDP in a fine-grained way. For example, operators
can update (such as add, delete and migrate) the stages
dynamically without reprogramming the whole program, and
even manipulate stage slots across different physical hardware
devices. Consequently, stage slots can be pooled and managed
as a unified resource as same as CPUs in a virtualized data
center.

E. Dynamic Compiler and Other Language Elements

A dynamic compiler compiles and configures programs on
a virtual PDP. The dynamic compiler acquires a P4 program
as an input, compiles the program, assigns stage slots for
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TABLE DECLARATION IN HYPERV.
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pipeline
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pipeline

Number of tables 2 3 4 4 16

the program, instantiates the virtual PDP as well as other
necessary states including program id, stage id etc., and finally
populates table entries. In HyperV, each packet is explicitly
tagged with a virtual PDP-id in the description header, and
dynamically assigned with a program id and stage id when
processed by the virtual PDP according to the tables config-
ured by the dynamic compiler. In the match pipeline of a stage
slot, packets will be matched on these ids to enforce isolation
and flexible composition of programs.

The dynamic compiler provides operators with several
models to manage programs on a virtual PDP. First is a
stage, which is functionally identical to a match-action stage
in P4. Stages can be flexibly instantiated in a stage slot
or composed to achieve complex processing. Second is a
program, which denotes an independent network function such
as a Router. Different programs can also be flexibly composed
or instantiated on a virtual PDP. Virtualization of other P4
language elements, including meters, counters, registers, are
implemented in a reserved way. Due to space cause, they will
not be covered in detail.

V. EVALUATION AND ANALYSIS OF HYPERV

At the time of writing this paper, we could not manage the
experiment on a P4 capable hardware device [7]. Therefore,
we implemented HyperV in the standard P4 BMv2 [14]
environment, and compared BMv2-target HyperV with Hyper4
in terms of resource usage and performance. In order to further
exploit the feasibility and performance penalty of HyperV, we
also implemented HyperV on the Intel DPDK [17] platform
and evaluated DPDK-target HyperV by comparing with Open
vSwitch [18] and PISCES [19], which are state-of-the-art
software switches, in terms of several benchmarks.

Our BMv2-target HyperV has a line-of-code (LoC) of
2000, while DPDK-target HyperV has a LoC of 8000. In the
following section, we will elaborate the evaluation of BMv2-
target HyperV and DPDK-target HyperV separately.

A. Evaluation of BMv2-target HyperV

All of our tests for BMv2-target HyperV are executed on the
off-the-shelf x86 platform with 2×4 Intel E5-2637 3.50Ghz
cores and 64GB memory. For resource usage, we evaluate
HyperV in terms of three significant benchmarks. First one is
resource declaration of a hypervisor. This benchmark denotes
how many resources are declared in the hypervisor. Since
hardware devices have their resource limitations, a hypervisor
should always declare resources as less as possible to be more
efficient and deployable. Second is table usage in runtime.
This benchmark identifies how many tables are used when
emulating an NF by a hypervisor. It directly impacts the
latency of packets. Third is metadata declaration. It involves
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Figure 5. Example of HyperV with two slots.

the width and type of match fields in a table, and has an
impact on TCAM and energy. For performance, we evaluate
BMv2-target HyperV by comparing with Hyper4 running
different programs we have implemented in terms of latency
and bandwidth.

1) Table declaration in HyperV: Figure 5 shows the
processing flow of HyperV. There are two configuration tables,
one is for setting the address of first stage for each packet at
the beginning; the other is for resubmitting the packet back
into the ingress pipeline in case of insufficient slots at the
end. From Table I, we can see that one stage slot totally
contains 24 tables, in the action pipeline, we optimize HyperV
to support all P4 language primitives with just 16 tables.
Besides, other three tables are used in the egress pipeline of
HyperV to implement actions including checksum and header
modification. The number of stage slots usually depends on
the physical resources of a hardware device where a high-end
device always supports more slots than a low-end device.

2) Comparison of table declaration: Hyper4 hard-codes
the implementation of a stage pipeline, hence the number of
table declaration is closely related to the number of stages
hard-coded as well as the maximum number of primitives
permitted in one compound action. However, table declaration
in HyperV depends on the number of slots configured by
operators and is irrelevant with above two factors. In order to
make a horizontal comparison with Hyper4 in terms of table
declaration, we also hard-code these two factors respectively
in HyperV.

In Figure 6(a), Hyper4 and HyperV both hard-code 5 stages
(5 slots in HyperV). As the maximum number of primitives
permitted in one compound action increases, Hyper4 suffers
from a linear growth of table declaration, while HyperV still
remains the same. In Figure 6(b), both Hyper4 and HyperV
set the maximum number of primitives to 9. We can see that
even in the case of 6 slots, HyperV declares only 149 tables
while Hyper4 needs more than 500 tables.
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Figure 6. Table declaration in different cases.

Table II
METADATA DECLARATION.

Metadata(Bits)Platform
Header User Control Total

HyperV 800 256 312 1368
Hyper4 800 256 2256 3312

3) Comparison of metadata declaration: Table II shows
metadata declaration in Hyper4 and HyperV. It can be seen
that because a hypervisor cannot infer the length of a packet
header until it starts to process the packet. Hence, both Hyper4
and HyperV reserve 800 bits (far surpasses common packet
header length) to hold a packet header, and 256 bits for
user-defined metadata (usually enough for most programs).
Benefiting from a rather structural design and simple inner
control logic, HyperV only needs 312 bits of metadata for
intrinsic control, while Hyper4 needs as many as 2256 bits.

4) Comparison of table usage in runtime : Table III shows
the number of tables used in runtime for various programs.
In our experiment, we implemented four programs and tested
them independently. A L2 switch is a simple layer-2 switch
with the learning ability. A Firewall is a layer-3 and layer-
4 firewall which can process packets based on user rules. A
Router can process packets with the longest prefix match. An
ARP proxy simply processes ARP request and reply packets.

As L2 switch is shown, packets in a native P4 switch
flow through two match-action tables, one is a source MAC
table and another is a destination MAC table. Accordingly
in Hyper4, 13 tables are required to emulate the L2 switch.
While in HyperV, only 5 tables are enough, including one
configuration table at the beginning, two match tables and two
action tables. The L2 switch in HyperV contains 2 slots and
each slot contains both match table and action table, therefore,
collectively four tables reside in 2 slots. Since a L2 switch has
no condition binding and has only one type of match field, it

Table III
TABLE USAGE IN RUNTIME FOR DIFFERENT PROGRAMS.

Programs Native P4 Hyper4 HyperV
L2 switch 2 13 5
Firewall 3 22 8
Router 4 28 16

ARP proxy 4 48 10

Table IV
LATENCY RATIO (PING TEST).

Programs Hyper4 : Native P4 HyperV : Native P4
L2 switch 3.41 : 1 1.70 : 1
Firewall 4.71 : 1 2.09 : 1

L2 switch + Firewall 3.44 : 1 2.23 : 1

Table V
BANDWIDTH RATIO (IPERF3 TEST).

Programs Hyper4 : Native P4 HyperV : Native P4
L2 switch 0.17 : 1 0.49 : 1
Firewall 0.11 : 1 0.43 : 1

L2 switch + Firewall 0.17 : 1 0.35 : 1

can be optimized to bypass other irrelevant tables in runtime.
In the Router and ARP proxy, HyperV uses 16 and 10

tables accordingly. Extra tables in the Router are used to
fulfill complex operations such as TTL validation check, TTL
modification and checksum recalculation. Comparing HyperV
with Hyper4, improvement is especially obvious when dealing
with complicated programs. Generally, HyperV reduces 2x to
4x of table usage in runtime comparing with Hyper4.

5) Comparison of performance: Since we could not man-
age to port Hyper4 into our environment. In order to make
a horizontal comparison with Hyper4, we port all programs
provided in the source code of Hyper4 into our environment
without any modification. Then test different compositions of
programs in accordance with Hyper4 and calculate the ratio
of Hyper4 and HyperV to native P4 in each own environment.
Table IV and Table V show the results in terms of latency and
bandwidth respectively.

As for HyperV, we can see the performance decreases
when programs become more complicated. As for Hyper4,
we suppose the test rules for L2 switch + Firewall are
rather simple, which makes it almost the same as the L2
switch. In respect of latency, HyperV is about 2x of the
native switch, while Hyper4 is 3x to 4x of the native switch.
As for bandwidth, HyperV averagely improves 2x to 3x of
bandwidth performance comparing with Hyper4. We attribute
this improvement to a much less use of resources in runtime
and a well-designed structure of HyperV.

B. Evaluation of DPDK-target HyperV

HyperV

MoonGen
Source/Sink

MoonGen
Source/Sink

2x10G 2x10G

Figure 7. Testbed topology.

1) Setup and metrics: Figure 7 shows the testbed topology
for evaluating the performance of DPDK-target HyperV. Our



testbed contains three x86 servers, two of which with 64GB
memory and 2×6 Intel(R) Xeon(R) E5-2620 2.40GHz cores,
are running MoonGen [20] packet generators and receivers.
MoonGen is a DPDK-based high-speed packet generator that
can provide 64-byte packets on a single CPU core at the speed
of 10 Gbps. The software switches and HyperV are running on
the middle server which is equipped with 64GB memory and
2×4 Intel(R) Xeon(R) E5-2637 3.50GHz cores. This server
has four 10G NIC ports, which are directly connected to the
packet generators and receivers through optical fibers. Hence,
the testbed could generate customized packets at 40 Gbps to
evaluate the forwarding performance of HyperV against Open
vSwitch and PISCES.

Open vSwitch has multiple data plane drivers, including
the kernel driver and the DPDK driver. Due to the fact
that HyperV is built on DPDK, we choose the DPDK-based
Open vSwitch as a high performance software counterpart
in this paper. PISCES [19] is a programmable and protocol-
independent software switch built on Open vSwitch. PISCES
could compile P4 programs into Open vSwitch source code
with a minor performance penalty, and PISCES provides an
efficient and expressive approach to define the behavior of the
software switch. So it is appropriate to view PISCES as a high
performance P4-based software switch.

We tested the end-to-end performance of DPDK-target
HyperV, PISCES, and Open vSwitch in terms of throughput
and latency. All switches in our benchmark were set up
to implement the L2 switch with four poll-mode threads
running on independent CPU cores over the same CPU socket.
Apart from the macro benchmark experimentation, a micro
benchmark experimentation was also implemented to further
understand the performance bottleneck of DPDK-target Hy-
perV. We utilized the time-stamp counter library of DPDK,
and measured the number of CPU cycles consumed by inner
elements of HyperV.

2) Macro benchmark: The packet generators in Figure
7 can create the specific size of packets at the full speed
of NICs. As for forwarding latency, sample packets with
time stamps will be sent to measure the end-to-end delay of
software switches. MoonGen will pour the background traffic
containing 64-byte packets at the speed of 4 Gbps into the
testbed to populate queues in software switches. Meanwhile,
sample packets of different sizes are generated to explore the
impact of the packet size on the end-to-end delay.

Throughput of three switches is shown in Figure 8(a) and
8(b), which illustrate that the DPDK-target HyperV imple-
mentation has a minor performance penalty while introducing
virtualization onto a PDP. As shown, HyperV could process
packets with 64 bytes at a speed of 42.14 Mpps, meanwhile
Open vSwitch and PISCES perform a little better and can
forward 64-byte packets at 45.71 Mpps and 45.95 Mpps
respectively. HyperV introduces a throughput penalty of about
7% in terms of processing small packets. For large packets,
all the three switches can maintain a line-rate throughput.

Previous researches including PISCES and Open vSwitch
have shown that the flow cache is of great significance in
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Figure 8. Throughput comparison.

enhancing forwarding performance, while the existing proto-
type of DPDK-target HyperV does not use any optimization
technique of flow caching to reduce the throughput penalty.
In spite of the throughput penalty comparing with PISCES
and Open vSwitch, we still deem it worthy to introduce
virtualization into the data plane at the expense of a minor
performance penalty.

Latency of packets is another concerned aspect in our
benchmarks. The average number (AVG) and median number
(MED) of latency are plotted in Figure 9(a). As it can be
seen, the latency of packets increases slightly with the packet
size. The latency of packets produced by Open vSwitch and
PISCES ranges from 4.42 µs to 7.24 µs. HyperV can process
a 64-byte packet in 6.28 µs on average. Besides, Figure 9(b)
shows the latency cumulative distribution of 64-byte packets
and indicates that more than 93.24% of 64-byte packets can
pass through HyperV in no more than 7 µs.

Both of PISCES and Open vSwitch adopt the run-to-
completion model as their packet processing model. In the run-
to-completion model, each packet in the data path is assigned
a single thread that completes the full functionality of packet
processing at one time. Nevertheless, DPDK-target HyperV is
based on the software pipeline model, which amortizes the
pipeline into individual elements running on separated worker
threads. Due to the fragmentation of the switch pipeline and
extensive use of FIFO queues, the latency of a packet going
through the pipeline of HyperV is theoretically higher than
PISCES and Open vSwitch.

As aforementioned, the goal of this evaluation is to inspect
the performance penalty introduced by HyperV accurately. We
can infer from the results that the performance penalty of
HyperV is acceptable when considering the up-and-coming
features provided by virtualization of a programmable data
plane.

3) Micro benchmark: To understand bottlenecks of
DPDK-target HyperV in depth, we make further efforts to
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measure CPU cycles consumed by inner elements of HyperV.
The prototype of HyperV has several processing elements
which can repeatedly process bursts of packets. (i) The first
element encountered by ingress packets in the pipeline is the
input node. It maintains RX queues of all physical or virtual
ports, from which the input node can fetch the incoming
packet bursts. Apart from receiving packets, the input node
should also configure the packet metadata and then distribute
pointers of packets into the queues of target elements. (ii) The
general nodes, representing the match-action tables, implement
customized match fields and action primitives. Multiple nodes
can share one CPU core to improve the utilization of the
computational resources while causing a sacrifice in perfor-
mance. (iii) The last kind of element is the conditional node
which can process a conditional statement. Through this node,
HyperV could implement arbitrary conditional semantics of P4
language or other data plane DSLs.

As stated in Section V-B2, the increase of latency is partially
introduced by the queue model implemented in DPDK-target
HyperV. Moreover, since elements in HyperV are designed
to process batches of packets, the size of a batch might also
has an impact on latency. Thus, we inspected the influence
of a queue on latency in micro benchmark by changing the
batch size of a queue. In the tests, the background traffic
of 64-byte packets at 1 Mpps is used to populate queues of
HyperV. We respectively measured CPU cycles consumed by
the input node, the general node and the FIFO queue and
the total. Measurement results of CPU cycles consumed by
different elements are plotted in Figure 10. Additionally, we
also measured CPU cycles consumed by different selected
actions in HyperV. We will illustrate the results separately in
the following.

Per-packet cycle counts of the pipeline (Total) increase as
the batch size of the queue becomes larger. As it can be seen
from Figure 10, the queue (Queue) consumes a large part of
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Figure 10. CPU cycle consumption.

total cycles, and the ratio is about 86.74% when there are as
many as 32 packets per batch. In contrast to the queue, cycles
of the input node (Input) and the general node (Node) remain
the same when the burst size increases. In fact, cycles per
packet of a input node and a general node decrease by several
cycles with the increase of batch size, because the packet batch
could amortize the cost of processing, e.g. memory accesses,
function calls, over packets in the batch. Thus, it is reasonable
to infer that the latency penalty partially originates from the
slightly excessive use of the queue in HyperV. And we also
have executed some straightforward experiments on the end-
to-end delay and throughput with different batch sizes. The
results do verify above conjectures and reveal that smaller
batch size leads to lower latency while causing a decline in
throughput.

Cycle counts of primitive actions are concluded briefly
as below. As a compound action can have more than one
primitive action, the cycles consumed by the compound ac-
tion will increase with the length of the action list, which
causes another potential performance bottleneck. Thus, we
tracked the performance of primitive actions in general
nodes. MODIFY FIELD consumes about 33 CPU cycles per
packet on average, when it’s appointed to modify L2 source
address. MODIFY FIELD WITH MASK is more complex
than MODIFY FIELD, and can modify discontinuous fields
with a mask. The number of cycles consumed by MOD-
IFY FIELD WITH MASK is about 39. ADD HEADER per-
forms a sophisticated action adding a predefined header into
the rigid header stack, which requires movement of memory
blocks. Thus, ADD HEADER consumes as many as 51 cycles
on average. What’s more, REMOVE HEADER only needs
about 45 cycles.

VI. DISCUSSION

Finally, we intend to discuss some open issues on the
capability and hardware feasibility of HyperV as following:

Capability of a hypervisor needs more research efforts
to support offloading network functions. Not all NFs are fit
for being offloaded onto the programmable data plane and
emulated by a hypervisor. For example complex and mutable
network functions such as deep packet inspection and sophis-
ticated packet encryption are far from being implemented by
the hypervisor. Actually, HyperV is devoted to facilitating the
offloading of NFs that have enough affinity to the data plane.
And our emphasis in this paper is not about which kinds of
NFs are suitable for offloading onto the data plane but how



to offload various kinds of NFs through virtualization of a
programmable data plane.

Hardware feasibility of HyperV is another important con-
sideration. When this paper is written, we could not manage to
experiment on a P4-capable hardware device. However, since
our design is strictly conformed to P4 specification and can
be correctly implemented in BMv2 environment, HyperV is
feasible for P4 hardware devices syntactically. As for deploy-
ment restriction, Hyper4 has discussed its deployment on RMT
[21] which is a hardware architecture for P4, and indicates that
RMT supports a limited number of applications emulated by
Hyper4. As stated in Section V-A, HyperV consumes much
fewer resources comparing with Hyper4, which means that
RMT can accommodate more applications when deploying
HyperV on it. Besides, the performance penalty may hinder
HyperV from being a practical tool. Thus, in our future work,
we will pay more attention on continuous improvement and
optimization for HyperV. Moreover, we will step further to
make HyperV closer to reality by evaluating it on more
hardware platforms.

VII. CONCLUSION

In this paper, we proposed HyperV, a high performance
hypervisor for full virtualization of P4 specific data plane,
to benefit from features of virtualization as well as minimize
performance penalty. Our evaluation shows that BMv2-target
HyperV prevails over Hyper4 with 2.5x performance while
reducing 4x resource usage. Our DPDK-target HyperV can
process 64-byte packets at the speed of 42.14 Mpps with
a minor throughput penalty, comparing with Open vSwitch
at 45.71 Mpps and PISCES at 45.95 Mpps. Meanwhile, the
DPDK-target HyperV can keep the latency lower than 9 µs
with packets of arbitrary size, and forward above 90% of 64-
byte packets in less than 7 µs.

It is non-negligible that HyperV comes with a performance
penalty, but it is well worthy to introduce the promising
virtualization features into the programmable data plane with
an acceptable performance penalty. Because we reasonably
consider virtualization of the data plane as an up-and-coming
topic that can effectively accelerate researches of offloading
NFs and modeling more general forwarding elements in net-
work devices. As HyperV is under extensive developing and
needs further improvement and optimization, we look forward
to collaborate with more researchers who share the same belief
with us to innovate on virtualization of the programmable data
plane.
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