
1

HyperVDP: High-Performance Virtualization of the
Programmable Data Plane

Cheng Zhang, Jun Bi, Yu Zhou, Jianping Wu

Abstract—With the advent of P4-specific programmable data
plane (PDP), network functions (NFs) can be offloaded into
the PDP to achieve high performance guaranteed by hardware.
Meanwhile, CPU powers consumed by NFs can be released
to user applications. However, as more and more NFs can be
offloaded, several problems rooted inside the PDP severely hinder
it from facilitating this offloading trend. (1) The existing PDP
provides the exclusive data plane abstraction where different NFs
cannot operate the same data plane. (2) The PDP is hardly able
to deploy NFs in a “hitless” manner.

In this paper, we propose HyperVDP as a high-performance
data plane hypervisor to provision non-exclusive abstraction
and uninterrupted reconfigurability on the P4-specific PDP. To
achieve virtualization, we design several innovative techniques
to equally express functions of all programmable elements in
the P4-specific PDP. We implement the prototype of HyperVDP
on different target platforms, and evaluate different target-based
prototypes by comparing with their counterparts. Results show
that BMv2-target HyperVDP averagely prevails over its counter-
part 2.5x in performance and 4x in resource efficiency. DPDK-
target HyperVDP performs comparably to its counterparts while
offering virtualization features which neither of its counterparts
could provide.

I. INTRODUCTION

Based on the newly emerged reconfigurable match-action
architecture [3] [4], the Programmable Data Plane (PDP)
enables network operators to customize the behaviors of
network devices which used to be functionally fixed and pro-
prietary. Accordingly, P4 [5], as a domain specific language,
is proposed to provide an easy-to-learn PDP programming
abstraction to network operators. As a result, with the help
of P4 language and the P4-specific PDP [6], [7], [8], more
and more data-plane-affiliative Network Functions (NFs) start
to be offloaded into network devices.

Recently, many research proposals including SilkRoad [9],
NetCache [10], NOPaxos [11], Dapper [12], Heavy-Hitter
Detector [13], [14], [15] and [16], have shown that NFs imple-
mented in the PDP can benefit from both high performance and

This work is supported by National Key R&D Program of China
(2017YFB0801701) and the National Science Foundation of China
(No.61472213). (Corresponding author: Jun Bi.)

Jun Bi and Jianping Wu are with Institute for Network Sciences and
Cyberspace, Tsinghua University, Department of Computer Science, Tsinghua
University, and Beijing National Research Center for Information Science and
Technology, and CERNET Network Center, Beijing 100084, China (e-mail:
junbi@tsinghua.edu.cn, jianping@cernet.edu.cn).

Cheng Zhang and Yu Zhou are with Institute for Network Sciences and
Cyberspace, Tsinghua University, Department of Computer Science, Tsinghua
University, and Beijing National Research Center for Information Science and
Technology (e-mail: {cheng-zhang13, y-zhou16}@mails.tsinghua.edu.cn).

A previous version of this paper has been published at ICCCN’17 [1]. The
source code of HyperVDP can be found at [2]

spare more CPU power for user applications in servers. With
the foreseeable flourish of DSLs and programmable devices
in the future, more and more PDP suitable NFs could be
considered shifting into data planes for purpose of improving
network performance and device efficiency.

However, several barriers rooted inside of the PDP severely
hinder this promising trend of offloading NFs into PDPs:

(1) Exclusive data plane abstraction. The existing PDP
presents an exclusive data plane abstraction and can only be
operated by one PDP program once deployed. This exclu-
sive abstraction inevitably leads to the consequences that the
existing PDP cannot provide isolation among multiple PDP
programs and is incapable of meeting the requirements of
multi-tenancy scenarios. For example, as more and more NFs
can be implemented in the PDP, different tenants in networks
may demand various compositions of NFs and configuration
policies at each hop along the network path. These NFs and
corresponding configurations, due to the diverse demands from
tenants, may be dependent, independent or even conflicted.
Therefore, it is necessary to provide isolation among PDP
programs to support network scenarios with multi-tenancy.

(2) Interrupted data plane reconfiguration. Due to the
intrinsic constraints of programmable devices, it is hardly
possible to dynamically reconfigure the device without inter-
rupting the operation of the data plane. According to [17] and
[6], reconfiguration of a programmable network device usually
depends on the size and design of the chip ranging from tens
of milliseconds to several minutes. Moreover, all device states
and table entries will be lost due to this interruption. Therefore,
in order to maintain the consistency of network states, it is
necessary to provide operators with an uninterrupted reconfig-
urability when deploying PDP programs.

Virtualization is one of many possible solutions to provide
isolation and hitless reconfiguration. In the field of networks,
virtualization commonly refers to network virtualization [18],
which can be categorized as either external virtualization,
combining many networks or parts of networks into a virtual
unit [19], or internal virtualization, providing network-like
functionality to software containers on a single network server
[20]. However, virtualization of the PDP is rather different
from the above notion of network virtualization.

In HyperVDP, the notion of virtualizing the PDP shares the
similar insights with the virtualization techniques (e.g. virtual
machines) adopted in operating systems [21]. Virtualizing the
PDP refers to as creating a virtual PDP that can equiva-
lently simulate the behaviors of the physical PDP. There-
fore, by HyperVDP, operators can create multiple isolated
virtual PDPs on one physical PDP, and dynamically instan-

2

tiate/migrate/update/delete NFs in each virtual PDP without
interrupting the physical PDP. Besides, various NFs are oper-
ated in virtual PDPs and can share hardware resources with
isolation in scenarios of multi-tenancy. In this way, the PDP
can provide both a non-exclusive data plane abstraction and
uninterrupted reconfigurability.

In this paper, we propose HyperVDP, a hypervisor with
structural designs and well-abstracted models, to fully virtual-
ize a P4-specific PDP while providing high performance and
efficient use of data plane resources. Essentially, HyperVDP
is a hypervisor that can interpret data plane programs and
manage virtual PDPs on top of the physical PDP. This hyper-
visor is similar with the virtual machine on the “bare-metal”
hardware device in operating systems [22]. In HyperVDP, we
proposed three novel techniques and concepts, including the
abstraction of virtual PDP, control flow sequencing, dynamic
stage mapping, to achieve full virtualization. Additionally, we
abstracted a model of stage slot to hold any number of stages.
In this way, different stages in different programs can be
allocated in the same slot to share the hardware resources (e.g.
the match-action tables) and improve efficiency. Moreover,
techniques of rapid parsing and pipeline bypassing are used to
reduce the performance penalty. Hence, HyperVDP can greatly
attain the sweet spot between virtualization and performance.
Apart from the designs mentioned above, HyperVDP also
provides operators with a set of operating models including
the stage slot, the virtual PDP, to support a flexible way
of composing NFs. Besides, a runtime control platform is
designed to compile P4 program and dynamically manage all
NFs as well as virtual PDPs without interrupting the physical
device.

We implement two prototypes of HyperVDP based on the
BMv2 target and the DPDK target respectively. We compare
the BMv2-target HyperVDP with Hyper4 (another virtualiza-
tion work which will be discussed in Section II) under various
benchmarks. Results indicate that BMv2-target HyperVDP
is averagely 2.5x performance advance of Hyper4 in terms
of bandwidth and latency while reducing 4x resource usage.
Then we evaluat DPDK-target HyperVDP by comparing with
state-of-the-art software switches, PISCES and Open vSwitch.
DPDK-target HyperVDP can process 64-byte packets at the
speed of 42.14 million packets per second (Mpps) with 4 CPU
cores and has a minor throughput penalty when comparing
with Open vSwitch at 45.71 Mpps and PISCES at 45.95 Mpps.
And for forwarding large packets, HyperVDP can maintain the
line rate of 40 Gbps. Meanwhile, DPDK-target HyperVDP can
keep the forwarding latency lower than 9 µs with packets of
arbitrary size, and above 90% of 64-byte packets can pass
through HyperVDP in less than 7 µs.

In this paper, we make the following contributions:
• We design HyperVDP as a hypervisor that fully virtual-

izes the P4-specific PDP while maintaining high perfor-
mance and resource efficiency.

• We propose an architecture of a PDP hypervisor and the
abstraction of virtual PDP to represent the virtual view
of the data plane.

• We propose several novel techniques and creative models
including the abstraction of virtual PDP, control flow

sequencing, dynamic stage mapping, to facilitate virtu-
alization of the PDP.

• We implement a BMv2-target and a DPDK-target Hy-
perVDP respectively, and evaluate them by comparing
with state-of-the-art software counterparts. Results show
that HyperVDP can achieve virtualization with a minor
performance penalty. We publish the source code of
HyperVDP at [2].

In the next section, we will discuss the related works. Then
we show the background of P4 language in Section III. In Sec-
tion IV, we will illustrate the design of HyperVDP and some
key techniques. In Section V, we will evaluate BMv2-target
HyperVDP and DPDK-target HyperVDP respectively. After
that we will discuss the capability and hardware feasibility of
HyperVDP in Section VI, and make a conclusion in Section
VII.

II. RELATED WORK

An earlier conference paper [1] presented a preliminary
design for HyperVDP including sketching the virtual PDP
abstraction and presenting ideas for virtualizing P4 language
elements on the PDP. Comparing with the previous work,
this paper (1) enhances the motivation of offloading data-
plane-enabled NFs; (2) implements the dynamic controller
supporting instantiation of NFs in the virtual PDP; (3) sets up
a fat-tree topology with different NF compositions instantiated
on multiple virtual PDPs, then evaluates the performance of
HyperVDP in network-wide granularity. Besides, this paper
also intensifies the implementation and publishes the source
code of HyperVDP.

To the best of our knowledge, Hyper4, is the only re-
search that shares the similar motivation with HyperVDP in
virtualizing the P4-specific PDP. Hyper4 [23], demonstrates
the feasibility of virtualization of the PDP. In Hyper4, a
hypervisor-like program is designed to provide partial virtual-
ization of the P4-specific data plane, so that simple data plane
programs can be equivalently emulated in Hyper4. However,
comparing with HyperVDP, Hyper4 has several problems as a
data plane hypervisor: (1) Hyper4 lacks a structural design and
well-abstracted models, including the virtual PDP, dynamic
controller, to interpret P4 programs. For example, parser, a
programmable element, is statically interpreted to multiple
resubmitting actions in Hyper4. However, in HyperVDP, we
utilize description header to support arbitrary interpretation
of parser. (2) Hyper4 merely supports partial virtualization of
P4-specific data plane. Several essential P4 language elements
such as if-else statement with boolean expressions, control
flow, are absent from virtualization. Therefore, this defect
makes Hyper4 not adaptable for most P4 programs, which
weakens the capacity of Hyper4 to support offloading NFs.
In contrast, HyperVDP provides a full-virtualization of the
programmable data plane including all programming elements
and is more general with P4 programs. (3) Hyper4 suffers
from a severe performance penalty due to the heavy use of
resubmitting actions in the parser and complex inner imple-
mentation logic. In HyperVDP, we use rapid parsing along
with other techniques to avoid resubmitting actions in the

3

parser and achieve both comparable high performance and
virtualization capability. (4) Hyper4 introduces an excessive
usage of hardware resources due to its hard-coded implemen-
tation, which also makes it not applicable to programs with
arbitrary number of stages. Comparably, HyperVDP utilizes
flow sequencing and stage mapping to logically extend the data
plane to support data plane programs with arbitrary number
of stages.

Other researches related with offloading, e.g. [24], [17],
[25], [26], have been designed to provide both high per-
formance and programmability based on the FPGA pro-
grammable data plane. Some of them could meet the non-
exclusive or uninterrupted demand to a certain extent. How-
ever, they either lack of well-abstracted models for virtual-
ization or lack of a hypervisor to uniformly decouple the
programs from the physical data planes. For example, in
ClickNP, a set of well-defined elements, similar with elements
in Click router [27], are implemented as built-in functions
in FPGA and can be flexibly composed by operators to
achieve complex processing. However, since ClickNP does
not take virtualization into consideration, the running NF
instance exclusively controls the physical data plane. Beside
of researches on data plane implementation, research of NFs
placement algorithm is also a significant topic to implement
NF offloading. Several NF placement algorithms are proposed
in [28], [29], [30], [31], [32], [33] to deploy NFs in different
scenarios meeting various requirements. HyperVDP could
cooperate with these algorithms to implement device-level
or network-level NFs offloading to provide flexible and high
performance NFs services.

Authors in [25] proposed a virtualized FPGA data plane
letting multiple virtual routers sharing the physical data plane
simultaneously to assist network virtualization. It leads to a
limited non-exclusive feature. However, the NF in [25] is
confined to a fixed router function and the reconfiguration
of a new NF will interrupt the data plane. Based on the
FPGA devices, [26] took a step forward and designed the
virtual data plane with a pipeline of match-action tables as
a more general data plane to provide flexibility. The key
distinction between our work and [26] is that HyperVDP is
devoted to designing a systematic approach to virtualize the
protocol-independent and programmable data plane. Moreover,
the work [26] mainly focuses on slicing the OpenFlow-like
data plane to afford an isolation feature. There is an essential
difference between virtualization of a fixed OpenFlow data
plane and P4-specific PDP, since a programmable data plane
has a more complex logic and hardware access ability than
OpenFlow data plane. The OpenFlow-like data plane itself
involves with little programmability of data plane behaviors
and is simple enough to meet the non-exclusive and non-
interrupted feature without any other special design.

III. BACKGROUND OF P4 LANGUAGE AND MOTIVATIONS
OF HYPERVDP

A. Background of P4 Language

P4, Programming Protocol Independent Packet Processor,
is a recently proposed domain specific language for defining

the behavior of the data plane. A P4 program mainly defines
(1) a parser, containing a collection of protocol formats and
corresponding state machines to parse headers; (2) a Direct
Acyclic Graph (DAG) of match-action stages, named control
flow, to define how packets are processed; and (3) a deparse
process to reconstruct packets.

Practically, the workflow of defining a P4 capable device
starts with a P4 program. Firstly, operators write and compile
a P4 program through a front-end compiler into a high-level
intermediate representation known as HLIR [34]. Then a back
end-compiler, e.g. p4c-bmv2 [35] or P4-to-EBPF [36], will
adapt the program into different targets including FPGA, CPU,
etc. Finally, through a runtime controller, such as P4Runtime
[37] and P4-ONOS [38], operators can populate table entries
into match-action tables on the data plane and make the target
device process packets as they are pre-defined. Swapping a
new logic into a P4 target should repeat the above procedure,
but all network states will be lost due to interruption of the data
plane, which might violate the running policies and degrade
performance of the whole network.

B. Motivations of HyperVDP

For a forwarding device in network, it is vital to keep
forwarding states consistent. However, as stated above, re-
configuring the logic of the programmable data plane in-
evitably leads to the loss of all forwarding states, which is
unacceptable in most practical industrial scenarios. By virtu-
alizing the programmable data plane, HyperVDP can naturally
keep all forwarding states consistently tracked and finely
managed. Besides, virtualization also enables HyperVDP to
support many other useful use-cases including:

• providing networks services for multiple tenants on one
single forwarding device with isolated virtual environ-
ment.

• deploying network measurement functions such as sketch-
based counting [39] in an on-demand way without inter-
fering with any other applications on the programmable
data plane.

• composing complex data plane programs dynamically
across multiple programmable data planes to support
flexible service function chains.

In order to provide full virtualization of P4 specific data
plane, several language elements are concerned by HyperVDP:
(1) header parser; (2) metadata, including standard metadata
and user-defined metadata; (3) registers, meters, and counters,
for stateful processing of packets; (4) match-action stages 1;
each stage contains one match-action table; (5) compound
action, composed of one or more primitive actions; and (6)
control flow, which is used to compose several stages along
with boolean expressions indicating stage branching.

IV. DESIGN OF HYPERVDP

A. Overview

Figure 1 shows the overall architecture of HyperVDP.
HyperVDP acts as a hypervisor on top of a physical P4 specific

1We will use stage for short in the following paper.

4

Physical Data Plane

Switch

Virtual PDP

Network
function

Router+Firewall+Switch

Control Plane

Data Plane

Rapid
Parsing

Control Flow
Sequencing

Dynamic
Stage Mapping

Virtual PDP

Network
function

Virtual PDP

Network
function

Dynamic Compiler

HyperVDP

CPU NPU FPGA ASIC ……

Install/Remove/Modify

P4
program

Firewal+Router

P4
program

P4
program

Figure 1: Design overview of HyperVDP.

data plane and provides a virtual view of underlying hardware
resources to upper programs. Operators can dynamically con-
figure HyperVDP to create a virtual PDP and instantiate a set
of programs on that particular virtual PDP without interfering
with other virtual PDPs. In addition, programs can be flexibly
instantiated and composed by an operator at runtime on one
virtual PDP.

In order to let operators configure HyperVDP from the
control plane, we also design a dynamic compiler running
in control plane. It can compile and analyze P4 programs
created by operators, then transform P4 language elements into
data plane models managed by HyperVDP, and dynamically
allocate resources such as program id, stage id, stage slot, and
populate tables on the virtual PDP.

In HyperVDP, we use three novel techniques and models
to achieve high performance as well as full virtualization of
P4 language elements. We also design a runtime controller
that compiles and manages virtual PDPs dynamically. Through
the dynamic controller, operators can flexibly instantiate and
deploy NFs in different virtual PDPs with isolation. In the
following section, we will provide details of several key
models and techniques used in HyperVDP.

B. Rapid Parsing

Reserved

(8 bits)

Length of Total

Header (8 bits)

Virtual PDP-id

(16 bits)
Ethernet TCP…

Description Header Original Header

Figure 2: Example of description header.

In a parser of a P4 program, operators can explicitly define
an arbitrary structure of a packet header and the corresponding
parsing logic of this header. Therefore, virtualizing a header
parser means that we must design a general parser being able
to parse arbitrary patterns of headers defined by operators. In
order to do so, Hyper4 designed a parser with a pipeline of

tables and heavily used resubmitting action to parse the header
layer by layer, and finally got the header as a whole. However,
this design encounters a significant performance penalty since
resubmitting is a heavyweight action and each packet suffers
from numbers of resubmitting actions.

In order to avoid a severe performance penalty while being
able to parse any pattern of packet headers rapidly, we design
a 4-byte description header (DH). A DH, as shown in Figure
2, encapsulates the original packet and explicitly identifies a
total length of both DH and the original header. It also contains
a virtual PDP-id that maps a packet to a virtual PDP. Since
in P4 language, a parser can automatically infer the variable
length of a member in a header structure by declaring the
total length of that header in another member of that header
structure. Through this technique, our general parser can view
the original header as a whole and infer it from the field in
DH without resubmitting packets.

Rapid parsing technique is a trade-off between performance
and space. However, we consider it as a reasonable way. Since
a general parser should be agnostic to any specific header
structure, the key purpose of a parser is to get the header
length. So it is more efficient to explicitly identify the length
than to parse packet layer by layer to calculate the length.

There is still one concern about implementation of this
“extra” DH. Hence, we provide three different ways of imple-
mentation to let operators themselves to weigh the balance.
First is an overlay method, where a DH can be implemented
by MAC-in-MAC, VXLAN, etc., and this method needs
an encapsulation mechanism. Second is by modification of
destination MAC, which is commonly used within data center
networks (e.g. [40]). Third is a transparent way, where each
packet will be normally parsed and matched by a unified
table to add a DH, then be resubmitted. Meanwhile, operators
need to populate some configuration tables when instantiating
programs on a virtual PDP.

C. Control Flow Sequencing

Table
Table
Table

Table Table

Table Table

Table

Table

Condition
Binding

Match
Pipeline

Action
Pipeline

Table
Table

Table

Decouple Match-Action Stage

Match
Bitmap

Action
Bitmap

Control Flow

Control Flow
Sequencing

Zoom in S3S1

S2 S3

S5S4

S1 S2 S3 S5S4

Figure 3: Control flow sequencing.

In a P4 program, a control flow is composed of a set of
stages and several boolean expressions. Stages can branch to
another stage depending on the result of a boolean expression.
Essentially, a control flow is a DAG where each node denotes
a stage and each edge represents the branch between stages.
So in order to virtualize a control flow, we have to interpret

5

various DAGs into a unified pattern. Hence, as shown in
Figure 3, firstly we decouple a match-action stage into three
fixed functional pipelines: condition binding pipeline, match
pipeline and action pipeline.

In the condition binding pipeline, we use 4 tables to emulate
the boolean expression bound with any particular stage in
control flows. This boolean result will decide whether the
packet should be processed by the following two pipelines
of the current stage, or it should be skipped the following
pipelines and branch to the next stage. Correspondingly, an
intrinsic metadata will be set to indicate the location of next
stage.

In the match pipeline, we classify the match fields in a
standard match-action table into three types: packet header,
standard metadata and user-defined metadata. Then we as-
semble the match pipeline with four tables, three of which
respectively contains each type of the match field, and the forth
one maps the combined match result to an action bitmap. In
this way, we avoid using an exceedingly large match field in
one table and reduce the TCAM pressure introduced by a large
match field. Besides, we also use a match bitmap to indicate
whether a table should be executed or skipped in a match
pipeline. This pipeline bypassing technique is frequently used
by various parts in HyperVDP to further improve performance.

An action bitmap indicates all primitives that should be en-
forced in a compound action and all primitive actions indicated
by an action bitmap will be executed orderly. Besides, we
also aggregate all primitive actions, so that an action pipeline
demands for a much less of tables to implement. Through an
action pipeline, HyperVDP can support a compound action
with an arbitrary number of primitives.

After decoupling a match-action stage, secondly we use the
topological sorting algorithm to convert a DAG into a uniform
linear sequence. Topological sorting can maintain the internal
dependency order between stages in a DAG and transform
arbitrary DAGs into a uniform pattern. Besides, each stage is
allocated with a unique stage id enabling branching from one
stage to another.

D. Dynamic Stage Mapping

Stage

Mapping

Stage Mapping

Stage slot 5

Stage lot 3

Stage slot 1

Cn.Stage-1

Stage slot 2

C1.Stage-1

Stage slot 3

Cn.Stage-3

Stage slot 4

C1.Stage-2

Stage slot 5

C1.Stage-4

Stage slot 6

C1.Stage-5

Cn.Stage-2

Control flow 1 :

Cn.Stage-1 Cn.Stage-2 Cn.Stage-3

C1.Stage-2 C1.Stage-4C1.Stage-3 C1.Stage-5C1.Stage-1

Control flow n :

C1.Stage-3

.
.

.

Figure 4: Dynamic stage mapping.

After control flow sequencing, HyperVDP manages to in-
terpret different DAGs into a uniform linear pattern. However,

the control flow in a P4 program may contain an arbitrary
number of stages. Therefore, HyperVDP faces the challenge
of mapping an unpredictable sequence of stages onto the
hardware data plane with limited resources. Inspired by the
mechanisms used in direct-mapped cache [41], we designed
the dynamic stage mapping as shown in Figure 4 to logically
extend the capability of the programmable data plane to
support arbitrary number of stages.

Firstly, we abstracted a concept of stage slot which can
hold any number of stages. Notably, the stage here is a
decoupled stage described in Section IV-C. So mapping a
sequence of stages into a limited number of stage slots is
similar to mapping a virtual memory address to a limited
physical memory in the operating system.

Secondly, since each stage is allocated with a unique stage
id by the dynamic compiler. Therefore, addressing one stage
is by calculating stage id modulo the total number of stage
slots on a hypervisor. However, due to the restriction of P4, a
stage cannot branch back in order to prevent inner loops. In
some cases, if a control flow does have more stages than slots,
HyperVDP has no choice but to resubmit packets to resume
processing. Definitely, there exists a trade-off between slots
and resubmitting actions. It is better to determine the number
of slots based on resources of hardware devices and operators’
choices.

In this way, we successfully map a flat sequence of stages
into a resource-limited hypervisor to support control flows
with arbitrary number of stages. Besides, the quantity of
physical slots could be adjusted depending on different types
of hardware devices. Additionally, stages in different if-else
conditional branches can be placed in the same slot since they
have irrelevant conditional bindings and will not cause any
ambiguous table entries when matching packet. A packet will
match only one stage from all branching stages in one slot
without any conflicts. Therefore, we are on working with a
algorithm to further exploit this stage dependency and optimize
Hyper+ by permitting slots to hold more stages to fully utilize
hardware resources.

Based on the stage mapping technique, HyperVDP not only
supports the stage sequence with arbitrary length, but also
provides operators with an infrastructural model of the stage
slot. Through the stage slot, operators can manage programs on
the virtual PDP in a fine-grained way. For example, operators
can update (such as add, delete and migrate) the stages
dynamically without reprogramming the whole program, and
even manipulate stage slots across different physical hardware
devices. Consequently, stage slots can be pooled and managed
as a unified resource as same as CPUs in a virtualized data
center.

E. Dynamic Compiler and Other Language Elements

A dynamic compiler compiles and configures programs on
a virtual PDP. The dynamic compiler acquires a P4 program
as an input, compiles the program, assigns stage slots for
the program, instantiates the virtual PDP as well as other
necessary states including program id, stage id etc., and
finally populates table entries. In HyperVDP, each packet is

6

Rapid parsing

Cfg end

Cfg start

Need

resubmit

Do add/del

header

checksum
Do

checksum

Do

deparser

n

slot id condition
Condition

binding

Match

pipeline

Action

pipeline
n n

y

slot id condition
Condition

binding

Match

pipeline

Action

pipeline
n

y

n

y

y

y

Packet

Add/del

header

Is

resubmit

Packet

n

n

n

y

y

y

Parser

Pipeline

Egress

Figure 5: Packet-processing example of HyperVDP with two
slots.

Configuration Other
One Stage Slot

Condition
Binding

Match
Pipeline

Action
Pipeline

No. of
Tables

2 3 4 4 16

Figure 6: Table declaration in HyperVDP.

explicitly tagged with a virtual PDP-id in the description
header, and dynamically assigned with a program id and stage
id when processed by the virtual PDP according to the tables
configured by the dynamic compiler. In the match pipeline of
a stage slot, packets will be matched on these ids to enforce
isolation and flexible composition of programs.

Figure 5 shows the processing flow of HyperVDP with
two stage slots. There are two configuration tables, one is
for setting the address of first stage for each packet at the
beginning of the pipeline; the other is for resubmitting the
packet back to the ingress pipeline in case of insufficient slots
at the end of the pipeline. From Figure 6, we can see that one
stage slot totally contains 24 tables, in the action pipeline,
we optimize HyperVDP to support all P4 language primitives
with just 16 tables. Besides, other three tables are used in the
egress pipeline of HyperVDP to implement actions including
checksum and header modification. Actually, the number of
stage slots depends on the physical resources of a hardware
device where a high-end device always supports more slots
than a low-end device.

The dynamic compiler provides operators with several
models to manage programs on a virtual PDP. First is a
stage, which is functionally identical to a match-action stage
in P4. Stages can be flexibly instantiated in a stage slot
or composed to achieve complex processing. Second is a
program, which denotes an independent network function such
as a Router. Different programs can also be flexibly composed
or instantiated on a virtual PDP. Virtualization of other P4
language elements, including meters, counters, registers, are
implemented in a reserved way. Due to space cause, they will

not be covered in detail.

V. EVALUATION

Dimension. The evaluation of HyperVDP contains four
dimensions. (1) In Section V-A, we compare HyperVDP with
Hyper4 in terms of resource usage including declared tables,
reserved metadata and etc. (2) In Section V-B, to evaluate the
performance of DPDK-target HyperVDP, we build a testbed
and conduct several experiments on DPDK-target HyperVDP,
PISCES and Open vSwitch in terms of micro-benchmarks
as well as macro-benchmarks. (3) In Section V-C, we de-
sign seven test policies where each policy demands different
composition of NFs. Based on the policies, we evaluate the
performance of BMv2-target HyperVDP by comparing with
Hyper4 and native P4-specific data plane. (4) In Section V-D,
to evaluate the performance of HyperVDP in network-wide
granularity, we build a testbed of fat-tree topology by BMv2
and measure the performance of HyperVDP. Notably, this
experiment also demonstrates the non-exclusive abstraction
and uninterrupted reconfigurability provided by HyperVDP.

Implementation. The implementation of HyperVDP con-
tain three components. (1) We utilize 3000 lines of P4 code
to implement HyperVDP on the BMv2 target. (2) In order to
further exploit the feasibility and performance penalty of Hy-
perVDP, we also implemented HyperVDP on the Intel DPDK
[42] platform with 8000 lines of C code and evaluated DPDK-
target HyperVDP by comparing with Open vSwitch [43] and
PISCES [44], which are state-of-the-art software switches, in
terms of several benchmarks. (3) Besides, we implement the
dynamic compiler for the BMv2-target HyperVDP based on
the P4Runtime platform [37] and P4 HLIR abstraction [34]
with 6000 lines of C++ code.

Setup. DPDK-target HyperVDP and BMv2-target Hyper-
VDP both run on the DELL R730 PowerEdge servers with 2×4
Intel E5-2620 2.40Ghz cores and 64GB memory. Moreover,
the DPDK runtime environment is connected to Intel 82599
NICs [45], each of which is quipped with two 10G ports.
Besides, we employ iPerf [46] and MoonGen [47] to test
these two HyperVDP targets in terms of throughput and delay.
MoonGen is a DPDK-based high-speed packet generator that
can provide 64-byte packets on a single CPU core at the speed
of 10 Gbps.

A. Resource Usage

We analyze the resource usage of HyperVDP in terms of
three metrics. The first one is table declaration of a hypervisor.
This benchmark denotes how many tables are required in
the hypervisor. Since hardware devices have their memory
resource limitations, a hypervisor should always declare re-
sources as less as possible in order to be more efficient
and deployable. The second one is metadata declaration. It
involves the width and type of match fields in a table, and
has an impact on memory allocation and TCAM usage. For
instance, for the RMT [3] architecture, each stage merely has
a limited number of physical memory and TCAM resources
for table matching. The last one is table usage at runtime.
This benchmark identifies how many tables are used when

7

executing an NF in a hypervisor. Using of more tables in
the pipeline prolongs prolong the processing delay, which is
proved by following experiments.. Thus, a hypervisor should
be optimized to save memory for table matching and run
management logic in high efficiency.

1 2 3 4 5 6 7 8 9
0

100

200

300

400

500

N
o

.
o

f
d

ec
la

re
d

 t
ab

le
s

No. of primitives

 HyperVDP

 Hyper4

(a) Table declaration with different primitives of 5 stages.

1 2 3 4 5 6 7 8
0

200

400

600

N
o

.
o

f
d

ec
la

re
d

 t
ab

le
s

No. of stages

 HyperVDP

 Hyper4

(b) Table declaration with different stages of 9 primitives.

Figure 7: Comparison of table declaration.

1) Table declaration: Hyper4 hard-codes the implementa-
tion of a stage pipeline, hence the number of table declaration
is closely coupled with the number of stages hard-coded as
well as the maximum number of primitives permitted in one
compound action. However, table declaration in HyperVDP
depends on the number of slots configured by operators and is
irrelevant with above two factors. In order to make a horizontal
comparison with Hyper4 in terms of table declaration, we also
hard-code these two factors respectively in HyperVDP.

In Figure 7(a), Hyper4 and HyperVDP both hard-code 5
stages (5 slots in HyperVDP). As the maximum number
of primitives permitted in one compound action increases,
Hyper4 suffers from a linear growth of table declaration, while
HyperVDP still remains the same. In Figure 7(b), both Hyper4
and HyperVDP set the maximum number of primitives to 9.
We can see that in the case of 8 slots, HyperVDP declares
only 197 tables while Hyper4 needs more than 650 tables.

Platforms
Metadata (bits)

Header User Control Total

HyperVDP 800 256 312 1368

Hyper4 800 256 2256 3312

Figure 8: Comparison of metadata Declaration.

2) Metadata declaration: Figure 8 shows metadata dec-
laration in Hyper4 and HyperVDP. Due to the fact that a
hypervisor cannot infer the length of a packet header until
it starts to process the packet. Hence, both Hyper4 and
HyperVDP reserve 800 bits (far surpass the common packet
header length) to hold a packet header, and 256 bits for user-
defined metadata (enough for most programs). Benefiting from
a structural design and simple inner control logic, HyperVDP
only needs 312 bits of metadata for intrinsic control, while
Hyper4 increases over sixfold and needs as many as 2256
bits.

NFs Native P4 Hyper4 HyperVDP

Switch 2 13 5

Firewall 3 22 8

Router 4 28 16

ARP Proxy 4 48 10

Figure 9: Table usage at runtime for different programs.

3) Table usage at runtime : Figure 9 shows the number of
tables used at runtime in HyperVDP and Hyper4. In the exper-
iments, we implement four NFs and test them independently.
As switch is shown, packets in a native P4 switch flow through
two match-action tables, one is a source MAC table and the
other is a destination MAC table. Accordingly in Hyper4, 13
tables are required to emulate the switch. While in HyperVDP,
only 5 tables are enough, including one configuration table at
the beginning, two match tables and two action tables. The L2
switch in HyperVDP contains 2 slots and each slot contains
both match table and action table, therefore, collectively four
tables reside in 2 slots. Since a L2 switch has no condition
binding and has only one type of match field, it can be
optimized to bypass other irrelevant tables at runtime.

In the Router and ARP proxy, HyperVDP uses 16 and 10
tables respectively. Extra tables in the Router are used to fulfill
complex operations such as TTL validation check, TTL mod-
ification and checksum recalculation. Comparing HyperVDP
with Hyper4, improvement is especially obvious when dealing
with complicated programs. Generally, HyperVDP reduces 2x
to 4x of table usage in runtime comparing with Hyper4.

B. Evaluation of DPDK-target HyperVDP

MoonGen
Source/Sink

MoonGen
Source/Sink

HyperVDP
2 x 10G 2 x 10G

Figure 10: Testbed topology.

1) DPDK Testbed: Figure 10 shows the testbed for evalu-
ating the performance of DPDK-target HyperVDP. The DPDK

8

testbed contains three servers, two of which are running Moon-
Gen packet generators and receivers. The software switches
and HyperVDP are running on the middle server which has
four 10G NIC ports directly connected to the packet generators
and receivers through optical fibers. We can use the testbed
to generate customized packets at 40 Gbps for the sake of
evaluating the forwarding performance of HyperVDP against
Open vSwitch and PISCES.

Open vSwitch has multiple data plane drivers, including
the kernel driver and the DPDK driver. Due to the fact that
HyperVDP is built on DPDK, we choose the DPDK-based
Open vSwitch as a high performance software counterpart
in this paper. PISCES is a programmable and protocol-
independent software switch built on Open vSwitch. PISCES
could compile P4 programs into Open vSwitch source code
with a minor performance penalty, and PISCES provides an
efficient and expressive approach to define the behavior of the
software switch. So it is appropriate to view PISCES as a high
performance P4-based software switch.

We tested the end-to-end performance of DPDK-target
HyperVDP, PISCES, and Open vSwitch in terms of throughput
and delay. All DPDK switches in our benchmark were set
up to implement the L2 switch with four poll-mode threads
running on independent CPU cores over the same CPU socket.
Apart from the macro benchmark experimentation, a micro
benchmark experimentation was also implemented to further
understand the performance bottleneck of DPDK-target Hy-
perVDP. We utilized the time-stamp counter library of DPDK,
and measured the number of CPU cycles consumed by inner
elements of HyperVDP.

2) Macro benchmark: The MoonGen packet generators
can create the specific size of packets at the full speed of NICs.
As for forwarding delay, sample packets with time stamps will
be sent to measure the end-to-end delay of software switches.
MoonGen will pour the background traffic containing 64-byte
packets at the speed of 4 Gbps into the testbed to populate
queues in software switches. Meanwhile, sample packets of
different sizes are generated to explore the impact of the packet
size on the end-to-end delay.

Throughput of three switches in different measuring met-
rics is shown in Figure 11(a) and Figure 11(b), which illustrate
that the DPDK-target HyperVDP implementation has a minor
performance penalty while introducing virtualization onto a
PDP. In this experiments, the test bed generates data traffic at
40 Gbps constantly to inspect the processing capability of the
data plane. We execute each test case for 10 times and get
the steady average results in Figure 11(a) and Figure 11(b).
We can see from both measuring metrics that for small packet
size, there exists minor difference of processing ability among
three switches, while for large packets all the three switches
can maintain a line-rate throughput. As shown in Figure 11(a),
HyperVDP could process packets with 64 bytes at a speed of
42.14 Mpps, meanwhile Open vSwitch and PISCES perform a
little better and can forward 64-byte packets at 45.71 Mpps and
45.95 Mpps respectively. HyperVDP introduces a throughput
penalty of about 7% in terms of processing small packets.

Previous researches including PISCES and Open vSwitch
have shown that the flow cache is of great significance in

64 128 256 512 1024 1280 1500
0

10

20

30

40

50

T
h

ro
u

g
h

p
u

t
(M

p
p

s)

Packet size (bytes)

 HyperVDP PISCES Open vSwitch

(a) Throughput in packets per second (Mpps).

64 128 256 512 1024 1280 1500
0

10

20

30

40

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Packet size (bytes)

 HyperVDP PISCES Open vSwitch

(b) Throughput in Gigabits per second (Gbps).

Figure 11: Throughput comparison.

enhancing forwarding performance, while the existing proto-
type of DPDK-target HyperVDP does not use any optimization
technique of flow caching to reduce the throughput penalty. In
spite of the throughput penalty comparing with PISCES and
Open vSwitch, we deem it worthy to introduce virtualization
into the data plane at the expense of a minor performance
penalty.

Delay of packets is another concerned aspect in the bench-
marks of DPDK-target HyperVDP. The mean latency is illus-
trated in Figure 12. As it can be seen, the latency of packets
increases slightly with the packet size. Open vSwitch and
PISCES process packets with latencies ranging from 4.42 µs
to 7.24 µs. HyperVDP can process a 64-byte packet in 6.28
µs on average.

Both of PISCES and Open vSwitch adopt the run-to-
completion model as their packet processing model. In the run-
to-completion model, each packet or each batch of packets in
the data path is assigned a single thread that completes the full
functionality of packet processing at one time. Nevertheless,
DPDK-target HyperVDP is based on the software pipeline
model, which amortizes the pipeline into individual elements
running on separated worker threads. Due to the fragmentation
of the switch pipeline and extensive use of FIFO queues, the
latency of a packet traversing the pipeline of HyperVDP is

9

64 128 256 512 1024 1280 1500
0

2

4

6

8

10

12

Packet size (bytes)

D
el

ay
 (

u
s)

 HyperVDP Mean PISCES Mean

 Open vSwitch Mean 1%~99%

Figure 12: Latency comparison.

4 8 16 32
0

500

1000

1500

2000

C
P

U
 C

y
cl

es
 p

er
 p

ac
k

et

Burst size (log-scale)

 Input

 Output

 Queue

 Total

Figure 13: CPU cycle consumption.

theoretically higher than PISCES and Open vSwitch.
As aforementioned, the goal of this evaluation is to inspect

the performance penalty introduced by HyperVDP accurately.
We can infer from the results that the performance penalty of
HyperVDP is acceptable when considering the up-and-coming
features provided by virtualization of a programmable data
plane.

3) Micro benchmark: To understand bottlenecks of
DPDK-target HyperVDP in depth, we make further efforts
to measure CPU cycles consumed by inner elements of Hy-
perVDP. The prototype of HyperVDP has several processing
elements which can repeatedly process batches of packets.
(1) The first element encountered by ingress packets in the
pipeline is the input node. It maintains RX queues of all
physical or virtual ports, from which the input node can fetch
the incoming packet bursts. Apart from receiving packets,
the input node should also configure the packet metadata
and then distribute pointers of packets into the queues of
target elements. (2) The general nodes, representing the match-
action tables, implement customized match fields and action
primitives. Multiple nodes can share one CPU core to improve
the utilization of the computational resources while causing a
sacrifice in performance. (3) The last kind of element is the

conditional node which can process a conditional statement.
Through this node, HyperVDP could implement arbitrary
conditional semantics of P4 language or other data plane
DSLs.

As stated in Section V-B2, the increase of delay is partially
introduced by the queue model implemented in DPDK-target
HyperVDP. Moreover, since elements in HyperVDP are de-
signed to process batches of packets, the size of a packet batch
might also has an impact on delay. Thus, we inspected the
influence of a queue on delay in micro benchmark by changing
the batch size of a queue. In the tests, the background traffic
of 64-byte packets at 1 Mpps is used to populate queues of
HyperVDP. We respectively measured CPU cycles consumed
by the input node, the general node and the FIFO queue and
the total. Measurement results of CPU cycles consumed by
different elements are plotted in Figure 13. Additionally, we
also measured CPU cycles consumed by different selected
actions in HyperVDP. We will illustrate the results separately
as follows.

Per-packet cycle counts of the pipeline (Total) increase as
the batch size of the queue becomes larger. As it can be seen
from Figure 13, the queue (Queue) consumes a large part of
total cycles, and the ratio is about 86.74% when there are as
many as 32 packets per batch. In contrast to the queue, cycles
of the input node (Input) and the general node (Node) remain
the same when the burst size increases. In fact, cycles per
packet of an input node and a general node decrease by several
cycles with the increase of batch sizes, because the packet
batch could amortize the cost of processing, e.g. memory
accesses, function calls, over packets in a batch. Thus, the
delay penalty partially originates from the slightly excessive
use of the queue in HyperVDP. And we also have executed
some straightforward experiments on the end-to-end delay and
throughput with different batch sizes. The results do verify
above conjectures and reveal that the smaller batch size leads
to lower delay while causing a decline in throughput.

Cycle counts of primitive actions are concluded briefly
as below. As a compound action can have more than one
primitive action, the cycles consumed by the compound ac-
tion will increase with the length of the action list, which
causes another potential performance bottleneck. Thus, we
tracked the performance of P4 primitive actions in general
nodes. MODIFY FIELD consumes about 33 CPU cycles per
packet on average, when it’s appointed to modify L2 source
address. MODIFY FIELD WITH MASK is more complex
than MODIFY FIELD, and can modify discontinuous fields
with a mask. The number of cycles consumed by MOD-
IFY FIELD WITH MASK is about 39. ADD HEADER per-
forms a sophisticated action adding a predefined header into
the rigid header stack, which requires movement of memory
blocks. Thus, ADD HEADER consumes as many as 51 cy-
cles. REMOVE HEADER only needs about 45 cycles.

C. Evaluation of BMv2-target HyperVDP
For the performance evaluation of BMv2-target HyperVDP,

we firstly implement six network functions as shown in Figure
14(a). Then we design seven different policies demanding var-
ious NF compositions as shown in Figure 14(b). For example,

10

Name Function Descriptions

MAC Learn Learn source MAC addresses and input ports.

L2_SW Forward packets based on destination MAC addresses.

L3_SW Forward packets based on destination IPv4 addressees.

IP_SG IPv4 source guard.

FW Filter packets according to layer-3 and layer-4 information.

QoS Set the queue id.

(a) NFs and descriptions of each NF.

Name NF Compositions

Pol. 1 L2_SW

Pol. 2 MAC Learn L2_SW

Pol. 3 MAC Learn QoS

Pol. 4 L3_SW

Pol. 5 L3_SW FW

Pol. 6 L3_SW IP_SG FW

Pol. 7 MAC Learn L3_SW IP_SG FW QoS

(b) Test cases composed of different NFs.

Figure 14: NFs and test policies for evaluation of BMv2-target
HyperVDP.

packets that belong to the composition Pol. 6 should firstly
traverse L3 SW, then IP SG, and FW at last. We use the NF
compositions to respectively evaluate the throughput and delay
of BMv2-target HyperVDP, Hyper4 and native P4 (all the three
platforms run on the BMv2 software switch). For native P4, we
directly implement the NF compositions exactly as demanded
by each policy in the table. Consequently, for experiments
conducted on native P4, these NF compositions are statically
configured into the BMv2 target without any virtualization
feature. However, for HyperVDP, those NF compositions can
be dynamically offloaded, modified and removed according to
high-level network intents.

Delay of the three platforms increase gradually. As can
be seen from Figure 15(a), the increasing delay of Hyper4
ranges from 70.4% (Pol. 3) to 90.6% (Pol. 2) when comparing
with native P4. For HyperVDP, the increasing delay remains
below 41.0% (Pol. 7), and the minimal increasing delay is
only 27.4% (Pol. 1). When making a comparison between
HyperVDP and Hyper4, we can see that HyperVDP acquires
a decreasing delay by 26.5% on average.

Throughput of the three platforms is shown in Figure
15(b). Hyper4 incurs a large throughput overhead which can
be a decrease of 89.8%. On average of the seven test cases, the
decreasing throughput of Hyper4 is 88.9%. For HyperVDP, the
decreasing throughput ranges from 34.6% to 70.3%, which is
much smaller than Hyper4. In the best cases, HyperVDP can
achieve an increasing throughput by 466.3% comparing with
Hyper4 in Pol. 1

Overall, HyperVDP not only provides richer semantics to
support offloading more NFs to the PDP, but also maintains the
performance overhead in an acceptable range which enables
the data plane hypervisor to provide high-performance and vir-
tualized services to various traffic flows. In the next section, we

P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7
0.0

0.2

0.4

0.6

0.8

1.0

 HyperVDP Hyper4 P4

D
el

ay
 (

m
s)

(a) Delay comparison.

P. 1 P. 2 P. 3 P. 4 P. 5 P. 6 P. 7
0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

 HyperVDP Hyper4 P4

(b) Throughput comparison.

Figure 15: Performance of BMv2-target HyperVDP.

will elaborate the performance of HyperVDP in network-wide
granularity, where different NF compositions are instantiated
for different virtual PDPs on various programmable devices in
network-wide granularity.

D. Evaluation of HyperVDP in Network-Wide Granularity

To elaborate the performance of HyperVDP in network-
wide granularity, we employ ten BMv2 software switches to
build a two-pod (i.e., H1 and H2 are in one pod, H3 and H4
are in another pod.) fat-tree topology shown in Figure 16(a). In
the topology, we connect one server to each edge switch, and
these servers act as not only packet generators but also packet
sinks. Flows are categorized into two types: one is inter-pod
(e.g., from H1 to H3), another is intra-pod (e.g., from H1
to H2). The NF compositions of Edge(IN) are applied to the
flows coming from the servers, while the NF compositions of
Edge(OUT) are designed for the flows going to the servers. For
every flow in each device along the forwarding path, different
NF compositions shown in Figure 16(b) are instantiated in
different isolated virtual PDPs on the hardware device. For
example, the intra-pod flow emitted by H3 will be processed
by composition of MAC Learn, L2 SW and QoS at E3 in one
virtual PDP context, while the intra-pod flow destined to H3

11

Edge

Aggregate

Core

H1 H2 H3 H4

E1 E2 E3 E4

A1 A2 A3 A4

C1 C2

BMv2 software switches
configured with HyperVDP.

MoonGen packet
generators and sinks.

(a) Fat-tree topology.

Flows Positions NF Compositions

Inter-
pod

Edge (IN) L2_SW IP_SG

Edge (OUT) L2_SW

Aggregate L2_SW

Core L3_SW FW QoS

Intra-
pod

Edge (IN) MAC Learn L2_SW IP_SG QoS

Edge (OUT) MAC Learn L2_SW QoS

Aggregate MAC Learn L2_SW QoS

(b) NF compositions in the fat-tree topology.

Figure 16: Fat-tree topology and corresponding NF composi-
tions.

will adopt the composition of MAC Learn, L2 SW, IP SG
and QoS at E3 in another virtual PDP context. These two
virtual PDPs can run simultaneously with isolation, and can be
dynamically reconfigured with any desired NF compositions
without interrupting the physical data plane.

In the fat-tree test bed, every packet generator sends forty
elephant flows and one thousand mice flows simultaneously
to the randomly-elected peers. The elephant flows contain
100MB data, while the mice flows only contain 10KB data.
All the flows are generated by iPerf. In the experiments, we
record and analyze the flow-level performance, e.g. the flow
completion time (FCT) of mice flows and the throughput of
elephant flows.

FCT of mice flows on three platforms is shown in Figure
17(a). For Hyper4, the FCT of 90% mice flows is below 0.515
of a second. However, for HyperVDP, 90% of the mice flows
can complete within 0.085 of a second, while only 21.9%
of the mice flows on Hyper4 can complete within 0.085 of
a second. The FCT of mice flows on HyperVDP is much
closer to the native P4 who has the optimal performance as
the baseline.

Throughput of elephant flows is shown in Figure 17(b).
Hyper4 incurs the worst performance among three platforms.
In Hyper4, throughput of 90% elephant flows is lower than 85
Mbps. However, for HyperVDP, more than 90% of the flows
have the throughput that is larger than 249 Mbps, and more
than 90% flows have a throughput up to 293 Mbps. On the
native P4, 90% of flows can have throughput of more than
249 Mbps.

The above experiments show that HyperVDP incurs a much
smaller performance overhead than Hyper4, which makes
HyperVDP a much more well-designed and high-performance

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.0

0.2

0.4

0.6

0.8

1.0

 HyperVDP

 Hyper4

 P4

C
D

F

FCT (s)

(a) FCT of mice flows.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Throughput (Gbps)

 HyperVDP

 Hyper4

 P4

(b) Throughput of elephant flows.

Figure 17: Cumulative distribution functions for mice flows’
FCT and elephant flows’ throughput.

hypervisor to introduce virtualization to the PDP. Besides, as
we stated above, HyperVDP provisions a stronger ability to
support full virtualization of programmable data plane primi-
tives than Hyper4. In a nutshell, HyperVDP, as a hypervisor
for the PDP, largely surpasses Hyper4 in the performance
dimension and the virtualization capability dimension.

VI. DISCUSSION

Finally, we intend to discuss some open issues of HyperVDP
as following:

Relation with NFV and OpenFlow-based virtualization
techniques. As mentioned in Section I, HyperVDP aims to
provide virtualization of the PDP behavior, which shares a
different motivation with NFV and OpenFlow-based virtual-
ization techniques.

As for NFV, HyperVDP is a complementary technique that
can be utilized to provide both built-in virtualization in the
network as well as performance enhancement. For example,
when implementing network function service chain in NFV
scenarios, HyperVDP can offload some data-plane-suitable
functions and maintain multiple virtual PDPs with different
compositions of network functions for different tenant. This

12

way of hardware and software co-orchestration by NFV and
HyperVDP can both enhance the performance and provides
service isolation.

Most OpenFlow-based virtualization techniques aim to pro-
vide external virtualization which logically merges multiple
network nodes into one virtual node. And this motivation is
usually achieved by using OpenFlow and other overlay proto-
cols to implement customized packet forwarding behaviors.
Unlike OpenFlow-based techniques which use customized
forwarding rules to achieve network virtualization, HyperVDP,
although motivates differently, can be viewed as an enhanced
infrastructure that supports both virtualization of data plane
behaviors and customized forwarding rules. For the PDP,
forwarding behaviors are decided by both data plane program
and forwarding rules. Therefore, comparing with OpenFlow-
based techniques, HyperVDP can provide more well-enhanced
and customized virtualization functions on the PDP

Capability. The data plane hypervisor needs more research
efforts to study the exact capability of the hypervisor to enable
offloading NFs onto the device. As a matter of fact, not all
NFs are fit for being offloaded onto the PDP and emulated by
the hypervisor. For example complex and mutable NFs such
as deep packet inspection and sophisticated packet encryption
are far from being implemented by the hypervisor. Therefore,
the capability of the hypervisor can provide an exact boundary
between offloadable NFs and un-offloadable NFs. In this paper,
HyperVDP is devoted to facilitating the offloading of those
NFs that have enough affinity to the PDP, and is not about
which kinds of NFs are suitable for offloading. In the future,
we will explore more into the capability of hypervisor on the
PDP.

Hardware feasibility. Feasibility of HyperVDP is another
important consideration. As described in the paper, the design
of HyperVDP is strictly conformed to P4 specification and
can be correctly implemented in BMv2 environment. Thus
HyperVDP is feasible for P4-enabled hardware devices syn-
tactically. As for hardware deployment restriction, Hyper4
has discussed its deployment feasibility on RMT which is a
hardware architecture, and indicates that RMT can support
a limited number of applications emulated by Hyper4. As
evaluated in Section V, HyperVDP consumes much fewer
resources in comparison with Hyper4, which means that RMT
can accommodate more applications when being deployed
with HyperVDP.

VII. CONCLUSION

In this paper, we proposed HyperVDP, a high performance
hypervisor for full virtualization of the PDP, to provision
features of virtualization including the non-exclusive data
plane abstraction as well as uninterrupted data plane re-
configurability. In HyperVDP, we propose several innovative
techniques such as abstraction of virtual PDP, rapid header
parsing, control flow sequencing and dynamic stage mapping,
to implement the design on the PDP base the P4 specification.
We build the prototype of HyperVDP on BMv2 target and
DPDK target. We evaluate the performance of HyperVDP in
terms of several benchmarks by comparing HyperVDP with

various counterparts. Our evaluation shows that BMv2-target
HyperVDP prevails over Hyper4 with 2.5x performance while
reducing 4x resource usage. Our DPDK-target HyperVDP can
process 64-byte packets at the speed of 42.14 Mpps with
a minor throughput penalty, comparing with Open vSwitch
at 45.71 Mpps and PISCES at 45.95 Mpps. Meanwhile, the
DPDK-target HyperVDP can keep the latency lower than 9
µs with packets of arbitrary size, and forward above 90% of
64-byte packets in less than 7 µs.

Currently, HyperVDP allocates data plane resources in a
first-come-first-serve way, and does not detect the incon-
sistency among network functions. In our future work, we
plan to add more features of QoS management into Hyper-
VDP to meet different NFs QoS requirements. Besides,it is
non-negligible that virtualization comes with a performance
penalty, but it is well worthy to introduce the promising virtu-
alization features into the PDP with an acceptable performance
penalty. As more and more NFs could be offloaded into the
data plane in the future time, data plane virtualization can be
an effective accelerating technique to make the programmable
network more dynamic and adaptive.

REFERENCES

[1] C. Zhang, J. Bi, Y. Zhou, A. Basit, and J. Wu, “Hyperv: A high perfor-
mance hypervisor for virtualization of the programmable data plane,” in
2017 26th International Conference on Computer Communication and
Networks (ICCCN), July 2017, pp. 1–9.

[2] C. Zhang and et. al, “Hyper project,” Website, https://github.com/
HyperVDP accessed May 2018.

[3] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn,” in
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 99–110.
[Online]. Available: http://doi.acm.org/10.1145/2486001.2486011

[4] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda,
and T. Edsall, “drmt: Disaggregated programmable switching,”
in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, ser. SIGCOMM ’17. New York,
NY, USA: ACM, 2017, pp. 1–14. [Online]. Available: http:
//doi.acm.org/10.1145/3098822.3098823

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014. [Online].
Available: http://doi.acm.org/10.1145/2656877.2656890

[6] B. Networks., “Barefoot tofino,” Website, https://barefootnetworks.com/
technology/#tofino.

[7] Netronome, “Netronome flow processor,” Website, https://netronome.
com/product/nfp-6xxx/.

[8] B. Company., “High-capacity strataxgs trident 3 ethernet switch series,”
Website, https://www.broadcom.com/products/ethernet-connectivity/
switch-fabric/bcm56870.

[9] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching
asics,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’17. New
York, NY, USA: ACM, 2017, pp. 15–28. [Online]. Available:
http://doi.acm.org/10.1145/3098822.3098824

[10] X. Jin, X. Li, H. Zhang, R. Soule, J. Lee, N. Foster, C. Kim, and
I. Stoica, “NetCache: Balancing Key-Value Stores with Fast In-Network
Caching,” in Proceedings of the 26th ACM Symposium on Operating
Systems Principles, ser. SOSP ’17, 2017.

[11] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports,
“Just say no to paxos overhead: Replacing consensus with network
ordering,” in 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16). GA: USENIX Association, 2016,

13

pp. 467–483. [Online]. Available: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/li

[12] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane
performance diagnosis of tcp,” CoRR, vol. abs/1611.01529, 2016.
[Online]. Available: http://arxiv.org/abs/1611.01529

[13] V. Sivaraman and et al., “Heavy-hitter detection entirely in the data
plane,” in Proceedings of the Symposium on SDN Research, ser. SOSR
’17. New York, NY, USA: ACM, 2017, pp. 164–176. [Online].
Available: http://doi.acm.org/10.1145/3050220.3063772

[14] S. Pack and S. Jang., “Development of universal programmable gateway
using p4 and smartnic,” Website, https://open-nfp.org/projects/.

[15] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishnamurthy, J. Nelson,
and S. Peter, “Evaluating the power of flexible packet processing for
network resource allocation,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA: USENIX
Association, 2017, pp. 67–82. [Online]. Available: https://www.usenix.
org/conference/nsdi17/technical-sessions/presentation/sharma

[16] Y. Li, R. Miao, C. Kim, and M. Yu, “Flowradar: A better netflow
for data centers,” in 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). Santa Clara, CA: USENIX
Association, 2016, pp. 311–324. [Online]. Available: https://www.
usenix.org/conference/nsdi16/technical-sessions/presentation/li-yuliang

[17] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong,
P. Cheng, and E. Chen, “Clicknp: Highly flexible and high performance
network processing with reconfigurable hardware,” in Proceedings
of the 2016 ACM SIGCOMM Conference, ser. SIGCOMM ’16.
New York, NY, USA: ACM, 2016, pp. 1–14. [Online]. Available:
http://doi.acm.org/10.1145/2934872.2934897

[18] Wiki, “Network virtualization,” Website, https://en.wikipedia.org/wiki/
Network virtualization.

[19] M. Casado and N. McKeown, “The virtual network system,” in
Proceedings of the 36th SIGCSE Technical Symposium on Computer
Science Education, ser. SIGCSE ’05. New York, NY, USA: ACM,
2005, pp. 76–80. [Online]. Available: http://doi.acm.org/10.1145/
1047344.1047383

[20] ETSI, “Network functions virtualisation,” Website, http://www.etsi.org/
technologies-clusters/technologies/nfv.

[21] V. Corporation, “Vmware and virtual machine,” Website, https://www.
vmware.com/cn.html.

[22] VMware., “vsphere esxi bare-metal hypervisor,” Website, http://www.
vmware.com/products/esxi-and-esx.html.

[23] D. Hancock and J. V. D. Merwe, “Hyper4: Using p4 to virtualize the
programmable data plane,” ser. CoNEXT ’16, 2016, pp. 35–49.

[24] Y. Liao, D. Yin, and L. Gao, “Pdp: Parallelizing data plane in virtual
network substrate,” in Proceedings of the 1st ACM Workshop on
Virtualized Infrastructure Systems and Architectures, ser. VISA ’09.
New York, NY, USA: ACM, 2009, pp. 9–18. [Online]. Available:
http://doi.acm.org/10.1145/1592648.1592651

[25] M. B. Anwer and N. Feamster, “Building a fast, virtualized data
plane with programmable hardware,” SIGCOMM Comput. Commun.
Rev., vol. 40, no. 1, pp. 75–82, Jan. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1672308.1672323

[26] J. Liu and et al, “Building a flexible and scalable virtual hardware
data plane,” in Proceedings of the 11th International IFIP TC 6
Conference on Networking - Volume Part I, ser. IFIP’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 205–216. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30045-5 16

[27] E. Kohler, “The click modular router,” Ph.D. dissertation, Cambridge,
MA, USA, 2001, aAI0803026.

[28] T. Taleb, M. Bagaa, and A. Ksentini, “User mobility-aware virtual
network function placement for virtual 5g network infrastructure,” in
2015 IEEE International Conference on Communications (ICC), June
2015, pp. 3879–3884.

[29] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck, “Optimal vnfs
placement in cdn slicing over multi-cloud environment,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 3, pp. 616–627,
March 2018.

[30] A. Laghrissi, T. Taleb, M. Bagaa, and H. Flinck, “Towards edge
slicing: Vnf placement algorithms for a dynamic amp;amp; realistic
edge cloud environment,” in GLOBECOM 2017 - 2017 IEEE Global
Communications Conference, Dec 2017, pp. 1–6.

[31] M. Bagaa, T. Taleb, and A. Ksentini, “Service-aware network function
placement for efficient traffic handling in carrier cloud,” in 2014 IEEE
Wireless Communications and Networking Conference (WCNC), April
2014, pp. 2402–2407.

[32] M. B. D. D. R. A. Addad, T. Taleb and H. Flinck, “Towards modeling
cross-domain network slices for 5g,” in IEEE Globecom18, December
2018.

[33] M. Bagaa, T. Taleb, A. Laghrissi, and A. Ksentini, “Efficient virtual
evolved packet core deployment across multiple cloud domains,” in 2018
IEEE Wireless Communications and Networking Conference (WCNC),
April 2018, pp. 1–6.

[34] P4 Language Consortium., “P4-hlir,” Website, https://github.com/p4lang/
p4-hlir.

[35] ——, “P4-bmv2,” Website, https://github.com/p4lang/behavioral-model.
[36] M. Budiu, “Compiling p4 to ebpf,” Website, https://github.com/iovisor/

bcc/tree/master/src/cc/frontends/p4.
[37] P4 Language Consortium., “A control plane framework and tools for the

p4 programming language,” Website, https://github.com/p4lang/PI.
[38] T. open networking operating system (ONOS)., “P4 support via bmv2

and p4runtime,” Website, https://wiki.onosproject.org/display/ONOS/
P4+support+via+BMv2+and+P4Runtime.

[39] R. Harrison, Q. Cai, A. Gupta, and J. Rexford, “Network-wide
heavy hitter detection with commodity switches,” in Proceedings
of the Symposium on SDN Research, ser. SOSR ’18. New
York, NY, USA: ACM, 2018, pp. 8:1–8:7. [Online]. Available:
http://doi.acm.org/10.1145/3185467.3185476

[40] A. Schwabe and H. Karl, “Using mac addresses as efficient routing
labels in data centers,” in Proceedings of the Third Workshop on
Hot Topics in Software Defined Networking, ser. HotSDN ’14. New
York, NY, USA: ACM, 2014, pp. 115–120. [Online]. Available:
http://doi.acm.org/10.1145/2620728.2620730

[41] P. D. A and H. J. L, “Computer organization and design: the hardware
software interface,” 1998.

[42] Intel, “Intel dpdk,” Website, http://www.dpdk.org/.
[43] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,

J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and
M. Casado, “The design and implementation of open vswitch,”
in Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’15. Berkeley, CA,
USA: USENIX Association, 2015, pp. 117–130. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2789770.2789779

[44] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and
J. Rexford, “Pisces: A programmable, protocol-independent software
switch,” in Proceedings of the 2016 ACM SIGCOMM Conference, ser.
SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp. 525–538.
[Online]. Available: http://doi.acm.org/10.1145/2934872.2934886

[45] I. Corporation., “Intel 82599 10 gigabit ethernet controller: Datasheet.”
Website, https://www.intel.com/content/www/us/en/embedded/products/
networking/82599-10-gbe-controller-datasheet.html.

[46] iPerf Project., “iperf - the ultimate speed test tool for tcp, udp and sctp.”
Website, https://iperf.fr/.

[47] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings
of the 2015 Internet Measurement Conference, ser. IMC ’15. New
York, NY, USA: ACM, 2015, pp. 275–287. [Online]. Available:
http://doi.acm.org/10.1145/2815675.2815692

