
NS4: Enabling Programmable Data Plane Simulation
Jiasong Bai, Jun Bi, Peng Kuang, Chengze Fan, Yu Zhou, Cheng Zhang

Tsinghua University

ABSTRACT
Network simulation plays a crucial role in the field of net-
work research, education, and industry. However, before
conducting a simulation on traditional network simulators,
operators need to develop a simulative behavioral model,
which requires intimate knowledge of the simulator imple-
mentation. Besides, the behavioral model cannot be migrated
directly into real-world devices due to its tight coupling with
the simulator platform, resulting in redundant and error-
prone codes rewriting. Recently, P4, a high-level domain
specific language (DSL), has attracted great attention from
both academia and industry for its advantages of enabling op-
erators to define behaviors of the programmable data plane.
Inspired by the idea of DSL, we present NS4, a P4-driven

network simulator supporting simulation of P4-enabled net-
works to address the problems existing in traditional sim-
ulators. Taking advantage of P4, NS4 simplifies the devel-
opment of a behavioral model and bridges the gap between
simulation and deployment. Furthermore, to the best of our
knowledge, NS4 is the first research effort to enable simu-
lation of a P4-enabled network, providing a useful tool for
P4 research and development. In this paper, we designed
and implemented NS4, consisting of data plane models inte-
grated with ns-3, the state-of-the-art network simulator, and
control plane models to interact with the P4 pipeline. Then
we evaluated its effectiveness and efficiency by simulating
several representative P4 programs. Results show that NS4
can simulate large-scale P4-enabled networks at a low cost.

CCS CONCEPTS
• Networks → Network simulations; Programmable
networks;

KEYWORDS
P4, programmable data plane, simulation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5664-0/18/03. . . $15.00
https://doi.org/10.1145/3185467.3185470

1 INTRODUCTION
Network simulation is widely used in nearly every aspect of
network research, teaching, and industry [1] [2]. Through
simulators, the behaviors of a real-world network get mod-
eled and the corresponding results are presented. Since it is
costly to deploy a testbed network, network simulators are
typically used to validate and evaluate the design of network
protocols and entities. To conduct such a simulation on a tra-
ditional network simulator (like ns-3), operators are required
to follow the steps listed below: First, develop a behavioral
model, which implements the design of network protocol or
entity, as an internal module of the simulator. Second, set
up the network topology and define tasks performed during
the simulation. Third, trigger the simulation to test whether
the behavioral model is behaving as expected. Finally, when
verification is a success, the simulation codes need rewrit-
ing to get deployed in testbeds or vendor devices. During
this process, traditional network simulators expose some
significant drawbacks:

D1: Developing the behavioral model is time-consuming,
error-prone, and even worse, requiring intimate familiarity
with the simulator, which turns to be a steep learning curve.

D2:Tightly coupledwith the specific simulator, simulation
codes are difficult to be ported to real-world networks. For
example, to bring a network entity into reality, it is inevitable
to transform codes in a General Purpose Language (like C++)
into those in a Hardware Description Language (like Verilog)
or even Circuit Board Design. The transformation introduces
both redundant work and potential bugs.

D3: Traditional network simulators lack support for the
programmable data plane. Existing software switches sup-
porting P4 (such as bmv2 [3] and pfpsim [4]) have to run with
a network emulator (such as mininet [5]). A network emula-
tor , in contrast to a network simulator , gets constrained by
host resources, thus failing to simulate large-scale or ultra-
speed P4-enabled networks.

The root of D1 and D2 can be concluded as the tight cou-
pling between the implementation of the behavioral model
and the simulator platform. We claim implementing a be-
havioral model should not require intimate knowledge of
simulator implementation. Considering the need for sim-
ulators supporting programmable networks (D3), it is an
appealing idea to integrate P4 into the network simulator.

In this paper, we presentNS4, a P4-driven network simula-
tor supporting simulation of large-scale P4-enabled networks.
By introducing P4 into ns-3, the state-of-the-art simulation

https://doi.org/10.1145/3185467.3185470

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Bai et al.

Table 1: Comparison of ns-3, NS4.
Attribute ns-3 NS4

Behavioral model development C++ P4
Model decoupling × √

Direct migration × √

Programmable data plane × √

platform, NS4 decouples the behavioral model from under-
lying simulation platforms. As listed in Table 1, with the
help of NS4, programmers only need to define behaviors
of packet processors, without using any simulator-specific
libraries (solution of D1). Moreover, the target independence
of P4 allows behavioral models of NS4 to be migrated directly
into real P4-enabled devices, which eliminates the redundant
code rewriting (solution of D2). Furthermore, NS4 is a help-
ful tool which helps P4 researchers simulate and validate
their works under arbitrary network contexts (solution of
D3). With NS4, P4 researchers and engineers can efficiently
evaluate various on-data-plane application designs, such as
the distributed protocol accelerator [6], the Layer-4 stateful
load balancer [7], the high-performance monitor [8], and the
key-value store cache [9] in networks of arbitrary scales.

There are several challenges in integrating P4 into ns-3.
C1: Modeling behaviors of real P4 devices (e.g., Tofino

[10] and P4FPGA [11]) based on ns-3 simulator.
C2: Existing runtime tools such as P4Runtime [12] and

ONOS-BMv2 [13] for controlling P4 programs cannot inter-
act with the simulated P4 module since ns-3 is a discrete-
event simulator. The runtime operations have to be trans-
formed into discrete events to get conducted.

C3: Simulating multiple P4 devices in a network requires
installing routing entries in every switch. Since configuring
flow entriesmanually is laborious and error-prone, automatic
population of flow entries is needed to simulate networks
with numbers of P4 devices.

NS4 builds an internal P4 pipeline to process packets as
P4 programs defined, and enables queues and buffers in a
pipeline to model behaviors of real P4 devices. To control the
internal P4 pipeline during simulation, NS4 supplies several
control modules to conduct runtime operations discretely.
Besides, borrowing the idea of reactive flow rule population
from OpenFlow [14], NS4 provides a module to compute and
populate flow entries reactively to mitigate the laborious
flow rule configuration.

Overall, this paper make the following contributions:

(1) Design and implementation of NS4, the first network
simulator supporting simulation of P4-enabled net-
works, which is available on Github [15].

(2) Design of internal queues and buffers to model the
behaviors of real devices, along with several control
modules to enable runtime operations.

(3) An evaluation of effectiveness and efficiency of NS4
by simulating several representative P4 programs.

The rest of this paper is organized as follows. We provide
background on P4 and ns-3 in Section 2. Section 3 describes
the detailed design of NS4. The evaluation of NS4 is elabo-
rated in Section 4. Section 5 introduces some related works.
Finally, we conclude our work in Section 6.

2 BACKGROUND
In this section, we briefly provide a high-level overview of
P4 language and ns-3 network simulator.

P4 language. P4 is a domain specific language for pro-
gramming behavioral of programmable data plane architec-
tures [16] [17], and is used to define how switches process the
packets, A P4-enabled switch can be abstracted as a model
containing a parser for extracting header fields, a collection
of match-action tables that process these headers, and a de-
parser for reconstructing the packets. After receiving packets,
the parser extracts fields from the header first and passes
the fields to match-action tables. Each table matches specific
fields configured by the controller, and perform the corre-
sponding actions. Finally, the deparser reconstructs packet
by writing the header fields back.

ns-3. ns-3 is a discrete-event network simulator in which
the network system is modeled as events happen at discrete
instances in time. There are several core concepts and ab-
stractions in ns-3. Node is the fundamental computing de-
vice abstraction, representing the device connecting to a
network. Application is the abstraction for a user program
that generates activities to be simulated. Channel is the ba-
sic communication subnetwork abstraction. To simulate a
network system, some common tasks is required to be done,
including creating Netdevices, allocating MAC addresses, in-
stalling NetDevices on Node, configuring the protocol stacks
of Nodes, and connecting theNetDevice toChannels, similar
to build a real-world network.

3 DESIGN
3.1 Architecture of NS4
Figure 1 shows the overall architecture of NS4. NS4 is divided
into a data plane half which contains a module for model-
ing a P4-enabled switch, NS4NetDevice, and a control plane
half composed of modules for controlling the data plane.
Developers simulate a P4-enabled device by instantiating a
NS4NetDevice, loading the P4 program, and populating flow
entries from the control plane. To assure compatibility of NS4,
NS4NetDevice can be connected to other NS4NetDevices or
traditional network devices like routers or switches (omitted
in the figure).

To control the data plane module of NS4, the control plane
is needed. It seems possible to use external controllers to

NS4: Enabling Programmable Data Plane Simulation SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

Flow Table Agent

C
hannelM

anager

C
hannelM

anager

Ingress

P4 Pipeline

NS4NetDevice

NS4Runtime NS4Controller

Traffic

P4 Programs

P4 Configurator

Define Pipeline Populate Flow Entries

Data Plane
Control Plane

Statistics
Collector

Configurations

NS4 Module Module Component TrafficControl MessagesInput Programs Statistics

Parser De-
parserEgress

Queues
&

Buffers

1 2

3

1
Workflow

ReactivelyProactively

Statistics

Figure 1: NS4 architecture.

control NS4NetDevice, since ns-3 supports interacting with
external devices. However, we argue it is an inappropriate
way since it makes NS4 a network emulator, which inter-
acts with external entities and gets constrained by system
resources, rather than a simulator. Besides, the coupling
with external devices makes emulation results dependent
on system resources, which means operators can receive
different results in different devices with the same program.
To enable P4 network simulation without introducing any
external network entities, we create internal control plane
modules to populate flow entries into flow tables and collect
statistics from switches discretely. Consisting of flow table
operations, user configurations are loaded and translated
into discrete events as simulation begins, and get performed
at the appointed time. To eliminate the laborious work of
configuring routing entries, we also add a module in NS4 to
enable reactive flow entries population during simulation.
The workflow of simulating a P4 network are shown as

numbers in Figure 1: (1) Configure the behavior of data plane
by inputting compiled P4 programs to P4 pipeline configu-
rator; (2) Create control plane and configure the flow table
operations and statistics collection tasks to be performed; (3)
Build network topology, install applications and trigger the
simulation. The control configurations are transformed into
discrete events and get performed at the appointed time.

3.2 Programmable Data Plane of NS4
NS4NetDevice, designed for modeling P4 devices, is the basic
module of the NS4 programmable data plane. By supply-
ing interfaces for connecting with other network devices,
NS4NetDevice enables operators to build a P4-enabled net-
work consisting of multiple network devices. The basic goal
of NS4NetDevice is to simulate the behaviors of the real-
world P4 devices. We integrate a complete P4 pipeline into
NS4NetDevice to simulate the behaviors of a P4 program.
With the help of P4 compiler like p4c, NS4 could support all
features and both two versions of P4. Moreover, to guarantee

Ingress
Pipeline

Queue
Selection

Multicast
Replication Queuing Egress

PipelineScheduler

Figure 2: The packet flow through the P4 pipeline of
NS4 data plane.

the fidelity of simulation and efficiency of simulation, we
make a further design on the queues and buffers.

P4 Pipeline P4 pipeline is the core of NS4NetDevice. To
enable customization of the pipeline, a configurator and a
flow table agent are abstracted in the module. On the initial-
ization of the device, the configurator loads the compiled P4
program to configure the behavior of pipeline. At runtime,
the flow table agent can be called by control modules to add,
modify, delete or query the entries of flow tables. Besides, we
add a channel manager outside to conceal details of underly-
ing channels and provide uniform interfaces for the pipeline,
which expands the scope of simulatable P4 devices of NS4.

Queuing System. There are multiple queues in the mod-
ule NS4NetDevice, and each egress port of the device can be
associated with several queues. A queuing system is imple-
mented to maintain and schedule the output queues. The
packet flow through the queuing system is abstracted as
Figure 2. When a packet leaves the ingress pipeline, it is
accompanied by a metadata which determines actions to be
taken in a queuing system, such as the set of ports to which
the packet will be sent. According to the metadata, the corre-
sponding set of queues is selected for each packet. A packet
may get replicated and be sent to multiple ports for purposes
like traffic flooding. After that, packets are moved to the
selected queues and wait to be scheduled. The scheduler
examines all queues which are eligible to transmit a packet,
dequeues and passes the packet to the egress pipeline. Differ-
ent priorities are assigned to queues, queues with a higher
priority always get scheduled prior to those with a lower
priority. For queues with the same priority, a weighted round
robin (WRR) mechanism is adopted to choose the scheduled
queue.

3.3 Control Plane of NS4
There are two main goals of the control plane in NS4: (1)
Translate the user configurations into discrete events and
trigger events at the appointed time; (2) Compute routing
paths and populate flow entries reactively for packets failing
to be matched in the P4 pipeline. NS4Runtime and Statistics
Collector are responsible for the former while NS4Controller
module accomplishes the latter.

Discrete operations. The user configurations are loaded
into control modules during device initialization and get
parsed into discrete events by control modules. Every line
in configurations corresponds to a discrete event, consist-
ing of a timestamp, a device id, a description of the action
type and the corresponding parameters, as shown in table 2.

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Bai et al.

Table 2: NS4 event format.
Time stamp Device ID Command Type Parameters

Table 3: NS4 flow table commands.
Command Type Description Parameters Executor

table_set_default Set default entry in a match table <table name> => <action>

NS4Runtime

table_add Add entry to a match table <table name> <match fields> => <action>
table_delete Delete entry from a match table <table name> <entry handle>
table_delete_wkey Delete entry using the match key <table name> <match fields>
table_modify Modify entry in a match table <table name> <entry handle> => <action>
table_modify_wkey Modify entry using the match key <table name> <match fields> => <action>

table_dump Dump all entries in a match table <table name>
Statistics Collectorcounter_read Read value(s) from counter <counter name> <index | entry handle>

counter_reset Reset values for counter to 0 <counter name> <index | entry handle>

The timestamp determines when the event to be performed
and the device id specifies the targeted device. Commands
type along with the parameters supported by NS4 are listed
in Table 3. Events of adding, modifying and deleting table
entries are performed by NS4Runtime while other events of
dumping the tables and reading the counters are performed
by Statistics Collector.
To record and schedule the events, NS4Runtime and Sta-

tistics Collector maintains an internal queue respectively.
Events are arranged in the order of execution time in each
module and get dequeued once the simulation time meets
the appointed time.

Reactive population. It is a laborious work to manually
configure all the forwarding rules, especially in a large-scale
network. Fortunately, there are some standard routing rules
to be installed in different network simulation scenes, such
as rules to complete ARP process. Given network topology,
these rules can be computed and populated during simula-
tion. Borrowing the idea of reactive flow entry population
from OpenFlow, we design NS4Controller module to popu-
late flow entries reactively during simulation. Similar to the
packet-in mechanism in OpenFlow, default action of every
flow table is set to send the packet to NS4Controller. After
receiving packets, NS4Controller computes routing paths ac-
cording to the source and destination address of packets and
populate the flow entries.
Since the flow tables in P4 devices are defined by P4 pro-

grams, the format of flow entries and name of the targeted
table remain unknown to NS4Controller. Thus, operators
need to pass the format and table name of each switch to
NS4Controller before conducting a simulation. NS4Controller
module is designed to be optional since it brings an extra bur-
den on the system. Operators are able to choose whether to
use the module according to the scale of simulation network.

4 EVALUATION
In this section, we explore the effectiveness and efficiency of
NS4.We first evaluate the ability of NS4 to simulate a large P4-
enabled network by simulating SilkRoad, a P4 load balancer
for data center networks, in a fat-tree [18] network based
on NS4. Then, we compare the development complexity of
NS4 with original ns-3 by developing behavioral models of
several representative data plane network functions. Finally,
we evaluate the performance of NS4 along two dimensions:
(1) Resource utilization; (2) Execution time. Our experiments
are conducted on a Dell R730xd PowerEdge server [19] with
two Intel Xeon-2620 CPUs, 64GB RAM and a Gigabit NIC.

4.1 Case Study
To illustrate the effectiveness of NS4, we simulate SilkRoad
based on NS4 as a case study. In cloud data centers, a lot of
traffic comes with a virtual IP address(VIP) and needs to be
mapped to a pool of servers with direct IP addresses(DIP)
by load balancing function [20]. While software load bal-
ancer(SLB) finishes the address mapping with a high over-
head, SilkRoad enables load balancing to be performed at
wire speed by offloading load balancing function to switches.
However, since the lack of a P4-enabled simulator, it was not
possible to evaluate the performance of SilkRoad in a data
center network by simulating its behaviors until NS4.
To explore the performance of SilkRoad with NS4, we

prototype and deploy SilkRoad in a fat-tree network with
k equals 8. To make a comparison, we also implement an
SLB application on the ns-3 platform. We use a network with
k equals 4 to give a brief overview of the simulation sce-
nario in Figure 4. To model data center traffic, we generate
inbound traffic with VIPs following an on-off pattern with
exponential random distribution [21], and send it to the net-
work through core switches. Hosts connected to the same
switch are considered as a pool of servers with DIPs, pro-
viding specific service for inbound packets. After receiving

NS4: Enabling Programmable Data Plane Simulation SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

Core

Aggr

Edge

Server Pool

VIP Traffic

DIP

VIP Traffic

DIP

…

…Hosts

1 2SilkRoad Scenario SLB Scenario

SLBSilkRoad

Figure 3: Simulation network.

packets with VIPs, switches deployed with SilkRoad conduct
the address mapping itself (Scenario 1 in Figure 4) while
the bare metal switches have to forward the packets to and
fetch the packets with DIPs from SLB (Scenario 2 in Figure 4).
After getting DIPs of packets, switches send packets to cor-
responding pools. We conduct simulations in two scenarios:
(1) Deploy SilkRoad in every core switch (2) Connect two
SLBs to every core switch. During simulation, we measure
the performance of system along latency and throughput in
both packet terms and flow terms.

The Cumulative Distribution Function (CDF) diagrams of
packet latency in two scenarios are shown in Figure 4(a). Ben-
efited from the high performance of switches deployed with
SilkRoad in packets processing, packets in SilkRoad scenario
have a smaller latency than those in SLB scenario. Figure 4(b)
depicts the system throughput in two scenarios. In both sce-
narios, system throughput increases as the simulation begins
and decreases to zero before simulation ends. During simula-
tion, the throughput of SilkRoad system always outperforms
that of SLB system since ASICs process packets much faster
than SLBs. Completion time and throughput of data flows
in two scenarios are depicted in Figure 4(c) and Figure 4(d).
SilkRoad provides a direct path between inbound packets
and targeted servers, eliminating the need for in-between
SLBs. Thus, TCP flows in SilkRoad scenario receive responses
faster than flows in SLB scenario, resulting in the difference
in completion time and flow throughput. The above results
indicate that SilkRoad has a better performance than tradi-
tional SLBs. This case shows that NS4 allows researchers
to simulate their P4 programs on a large-scale network for
verification and evaluation.

4.2 Development Complexity
We evaluate the development complexity of NS4 with several
representative P4 applications. To make a comparison, we
also implement these applications on the ns-3 platform. Since
the headers and parsers of P4 programs can be shared and the

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Latency (us)

 SilkRoad

 SLB

(a) Packet latency.

0 20 40 60 80
0.0

1.0

2.0

3.0

4.0

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Time (s)

 SilkRoad

 SLB

(b) System throughput.

SilkRoad SLB
10

20

30

40

50

F
C

T
 (

s)

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

(c) Flow completion time (FCT).

SilkRoad SLB

10

20

30

40

50

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

(d) Flow throughput.

Figure 4: Metrics measured in SilkRoad scenario and
SLB scenario.

development of them is a one-time cost, we only take codes
of match-action tables and control flows into account. Our
first application implements the Layer 2 / Layer 3 forward-
ing (L2/L3 Switch) for packets. Based on it, the following
applications accomplish several network functions includ-
ing Access Control List (ACL) to filter out specific packets,
Network Address Translation (NAT) to map IP addresses
into another address space, Source Guard (SG) to filter out
malicious packets on a Layer 2 port and Storm Control (SC)
to prevent LAN ports from disrupted by broadcast.
NS4 reduces the difficulty and workload of behavioral

model development significantly. Taking advantage of the
device independence of P4, NS4 enables operators only write
the packet processing logic codes without calling any inter-
nal libraries of the simulator. As listed in Table 4, line of
P4 applications implementing the network functions is less
than half of line of codes of C++ applications.

4.3 Simulation Performance
To explore the ability of NS4 to simulate large-scale net-
works, we simulate fat-tree networks with different k values
with NS4. As for network traffic, we randomly select com-
munication pairs including a sender and a receiver across all
hosts. In the simulation, the sender in each pair sends 1 Mbps
traffic to the receiver simultaneously. Before conducting the
simulation, we pre-calculate and populate routing flow rules
to each switch. We set simulation seconds as 100 seconds
each time and measure the performance of simulator along
resource utilization and execution time.

Resource Utilization. We select CPU and memory as
metrics to measure the resource utilization. The results are
shown in Figure 5(a) and Figure 5(b). As k value increases

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA J. Bai et al.

4 6 8 10 12 14 16 18 20 22 24
0

20

40

60

80

100

C
P

U
 (

%
)

K Value

 NS4

 ns-3

(a) CPU utilization.

4 6 8 10 12 14 16 18 20 22 24

0.00

1.00

2.00

3.00

4.00

5.00

6.00

M
em

o
ry

 (
G

B
)

K Value

 NS4

 ns-3

(b) Memory utilization.

4 6 8 10 12 14 16 18 20 22 24

0

40

80

120

160

200
 NS4

E
x

e
c
u

ti
o

n
 T

im
e
 (

s)

K Value

(c) Execution time.

Figure 5: NS4 performance.

Table 4: Behavioral model development complexity of
ns-3 and NS4.

Cases Features ns-3 NS4

#1 L2/L3 Switch 598 165
#2 L2/L3 Switch, ACL 803 252
#3 L2/L3 Switch, ACL, NAT 1038 494
#4 L2/L3 Switch, ACL, NAT, SG, SC 1219 637

from 4 to 24, CPU utilization of ns-3 rises faster than that of
NS4. Memory occupation of NS4 increases from 131 MB to
6008 MB while memory occupation of ns-3 remains no more
than 400 MB. This is because the different routing strategies
adopted by two simulators. ns-3 adopts an on-demand rout-
ing policy in looping networks, calculating routes for packets
during the simulation, which saves memory resources but
consumes more CPU resources and requires a longer ex-
ecution time (even hours). In contrast, NS4 pre-computes
and populates routing entries in every switch, resulting in
a lower CPU utilization, a shorter execution time (minutes)
but an O(k3) memory occupation. Since not all entries will
get used in the simulation, operators can populate part of
entries to save memory.

Execution Time. As depicted in Figure 5(c), execution
time rises from 4 seconds to 178 seconds as k value increases.
The execution time of ns-3 is omitted in the figure since
it is at the hour level. NS4 is outperforming ns-3 by times
in execution time because NS4 does not need to compute
routing rules during simulation, with all forwarding rules are
calculated in advance. Thus, the simulation can be completed
in minutes even there are thousands of hosts in the network,
which allows NS4 simulation to be conducted on hosts with
limited computation resources.

5 RELATEDWORKS
Our work is motivated by both previous network simulators
and P4 toolkits, along with some industry P4 technologies.

Network Simulators. OPNet [22] is a commercial net-
work simulator based on discrete events. Besides develop-
ment environment for specification of the simulation, it also
provides a graphical GUI for the design of the simulation
[23]. ns, consists of ns-1, ns-2 [24] and ns-3 [25] is a series
of discrete-event open source network simulators developed

by different groups and organizations. ns-3, first released in
2008, has been widely used in research and teachings, and a
lot works [26] [27] [28] has been done to extend ns-3 to sup-
port more network scenarios. PFPSim provides a simulator
for programmable forwarding plane devices, which enables
operators to define the architecture and processing behavior
of device by high-level languages including C++ and P4. PF-
PSim supplies a software switch model which can load P4
programs, but it still lacks some components to simulate a
complete P4-enabled network.

P4 Toolkits. P4.org [29] offers a set of toolkits to help
compile, verify, and run P4 programs, including bmv2 which
provisions a standard behavioral model for P4 language, p4c,
a reference compiler for the P4 programming language, and
P4 Runtime which provides a control plane framework and
tool for P4. Besides, there are works about P4 compiling in
both academia and industry [30]. Barefoot Networks pro-
vides Capilano software development environment [31] to
compile P4 programs into their Tofino chips. Introducing P4
into network simulation, our work is demonstrated on [32].

6 CONCLUSIONS
In this paper, we proposed NS4, a discrete-event network
simulator for modeling a network containing one or more
P4-enabled devices. By introducing P4 into traditional net-
work simulators, NS4 not only simplifies the development
of behavioral model but also enables the simulation codes to
be migrated directly to real-world devices. To the best of our
knowledge, NS4 is the first simulator supporting large-scale
P4-enabled networks, which enables researchers to validate
and evaluate their P4 programs. We implement and eval-
uate NS4 and the results shows NS4 is able to simulate a
P4-enabled network with acceptable overhead.

ACKNOWLEDGEMENT
This research is supported by National Key R&D Program
of China (2017YFB0801701), the National Science Founda-
tion of China (No.61472213) and CERNET Innovation Project
(NGII20160123). Jun Bi is the corresponding author. We are
grateful to anonymous reviewers and shepherd, Anirudh
Sivaraman for valuable and constructive comments that
helped us improve the manuscript.

NS4: Enabling Programmable Data Plane Simulation SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

REFERENCES
[1] ns-3. https://www.nsnam.org/, 2011.
[2] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,

Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhan,
Ya Xu, et al. Advances in network simulation. Computer, 33(5):59–67,
2000.

[3] Behavioral model. https://github.com/p4lang/behavioral-model.
[4] Samar Abdi, Umair Aftab, Gordon Bailey, Bochra Boughzala, Faras

Dewal, Shafigh Parsazad, and Eric Tremblay. Pfpsim: A programmable
forwarding plane simulator. In Architectures for Networking and Com-
munications Systems (ANCS), 2016 ACM/IEEE Symposium on, pages
55–60. IEEE, 2016.

[5] Mininet Team. Mininet: An instant virtual network on your laptop (or
other pc). http://mininet.org/, 2012.

[6] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and
Dan R. K. Ports. Just say no to paxos overhead: Replacing consensus
with network ordering. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 467–483, GA,
2016. USENIX Association.

[7] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. Silkroad: Making stateful layer-4 load balancing fast and cheap
using switching asics. In Proceedings of the 2017 ACM SIGCOMM
Conference, SIGCOMM ’17, pages 525–538, Los Angeles, CA, USA,
2017. ACM.

[8] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper:
Data plane performance diagnosis of tcp. In Proceedings of the Sym-
posium on SDN Research, SOSR ’17, pages 61–74, New York, NY, USA,
2017. ACM.

[9] Jin Xin, Xiaozhou Li, Zhang Haoyu, Robert Soule, and Jeongkeun.
Lee. Netcache: Balancing key-value stores with fast in-network
caching. P4 workshop 2017. http://p4.org/wp-content/uploads/2017/
06/p4-ws-2017-netcache.pdf.

[10] Barefoot Networks. Tofino. https://barefootnetworks.com/
technology/.

[11] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shri-
vastav, Nate Foster, and Hakim Weatherspoon. P4fpga: A rapid pro-
totyping framework for p4. In Proceedings of the Symposium on SDN
Research, SOSR ’17, pages 122–135, New York, NY, USA, 2017. ACM.

[12] P4runtime: a control plane framework and tools for the p4 program-
ming language. https://github.com/p4lang/PI.

[13] P4 brigade. https://wiki.onosproject.org/display/ONOS/P4+brigade.
[14] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: enabling innovation in campus networks. ACM SIGCOMM
Computer Communication Review, 38(2):69–74, 2008.

[15] Ns4. https://ns-4.github.io, 2017.
[16] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-

own, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for sdn. In Proceedings of the ACM SIGCOMM 2013 Conference on
SIGCOMM, SIGCOMM ’13, pages 99–110, New York, NY, USA, 2013.
ACM.

[17] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Var-
gaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse
Chuang, Isaac Keslassy, Ariel Orda, and Tom Edsall. drmt: Disaggre-
gated programmable switching. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’17,
pages 1–14, New York, NY, USA, 2017. ACM.

[18] Charles E Leiserson. Fat-trees: universal networks for hardware-
efficient supercomputing. IEEE transactions on Computers, 100(10):892–
901, 1985.

[19] Dell. Poweredge r730 rack server. Website. http://www.dell.com/
en-uk/work/shop/productdetailstxn/poweredge-r730.

[20] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert
Greenberg, David A Maltz, Randy Kern, Hemant Kumar, Marios Zikos,
Hongyu Wu, et al. Ananta: Cloud scale load balancing. In ACM
SIGCOMM Computer Communication Review, volume 43, pages 207–
218. ACM, 2013.

[21] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang.
Understanding data center traffic characteristics. ACM SIGCOMM
Computer Communication Review, 40(1):92–99, 2010.

[22] Xinjie Chang. Network simulations with opnet. In Simulation Confer-
ence Proceedings, 1999 Winter, volume 1, pages 307–314. IEEE, 1999.

[23] Sebastian Rampfl. Network simulation and its limitations. In Proceed-
ing zum Seminar Future Internet (FI), Innovative Internet Technologien
und Mobilkommunikation (IITM) und Autonomous Communication Net-
works (ACN), volume 57, 2013.

[24] Kevin Fall and Kannan Varadhan. The network simulator (ns-2). URL:
http://www. isi. edu/nsnam/ns, 2007.

[25] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell, and
J Kopena. Network simulations with the ns-3 simulator. SIGCOMM
demonstration, 14(14):527, 2008.

[26] Hemin Yang, Chuanji Zhang, and George Riley. Support multiple
auxiliary tcp/udp connections in sdn simulations based on ns-3. In
Proceedings of the Workshop on ns-3, pages 24–30. ACM, 2017.

[27] Steven Smith, David R Jefferson, Peter D Barnes Jr, and Sergei Nikolaev.
Improving per processor memory use of ns-3 to enable large scale
simulations. In Proceedings of the 2015 Workshop on ns-3, pages 60–66.
ACM, 2015.

[28] Sérgio Conceição, Filipe Ribeiro, Rui Campos, and Manuel Ricardo.
Novel ns-3 model enabling simulation of electromagnetic wireless
underground networks. In Proceedings of the 2015 Workshop on ns-3,
pages 9–16. ACM, 2015.

[29] Behavioral model repository. https://p4.org/.
[30] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Com-

piling packet programs to reconfigurable switches. In NSDI, pages
103–115, 2015.

[31] Barefoot Networks. Barefoot capilano. Website. https://
barefootnetworks.com/products/brief-capilano/.

[32] Chengze Fan, Jun Bi, Yu Zhou, Cheng Zhang, and Haisu Yu. Ns4: A
p4-driven network simulator. In Proceedings of the SIGCOMM Posters
and Demos, pages 105–107. ACM, 2017.

https://www.nsnam.org/
https://github.com/p4lang/behavioral-model
http://mininet.org/
http://p4.org/wp-content/uploads/2017/06/p4-ws-2017-netcache.pdf
http://p4.org/wp-content/uploads/2017/06/p4-ws-2017-netcache.pdf
https://barefootnetworks.com/technology/
https://barefootnetworks.com/technology/
https://github.com/p4lang/PI
https://wiki.onosproject.org/display/ONOS/P4+brigade
https://ns-4.github.io
http://www.dell.com/en-uk/work/shop/productdetailstxn/poweredge-r730
http://www.dell.com/en-uk/work/shop/productdetailstxn/poweredge-r730
https://p4.org/
https://barefootnetworks.com/products/brief-capilano/
https://barefootnetworks.com/products/brief-capilano/

	Abstract
	1 Introduction
	2 Background
	3 Design
	3.1 Architecture of NS4
	3.2 Programmable Data Plane of NS4
	3.3 Control Plane of NS4

	4 Evaluation
	4.1 Case Study
	4.2 Development Complexity
	4.3 Simulation Performance

	5 Related Works
	6 Conclusions
	References

