
P4DB: On-the-fly Debugging of the Programmable
Data Plane

Cheng Zhang∗†‡, Jun Bi∗†‡, Yu Zhou∗†‡, Jianping Wu∗†‡, Bingyang Liu §,
Zhaogeng Li ∗†‡, Abdul Basit Dogar∗†‡, Yangyang Wang ∗†‡
∗Institute for Network Sciences and Cyberspace, Tsinghua University

†Department of Computer Science, Tsinghua University
‡Tsinghua National Laboratory for Information Science and Technology (TNList).

§Huawei Technologies Co., Ltd.

Abstract—While extending network programmability to a
larger degree, P4 also raises the risks of incurring runtime bugs
after the deployment of P4 programs. These runtime bugs, if not
handled promptly and properly, can ruin the functionality and
performance of networks. Unfortunately, the absence of runtime
debuggers makes troubleshooting of P4 program bugs challenging
and intricate for operators. This paper is devoted to the on-the-fly
debugging of runtime bugs in P4-enabled networks. We propose
P4DB, a general debugging platform that empowers operators to
debug P4 programs in three levels of visibility by provisioning
operator-friendly primitives. By P4DB, operators can use the
watch primitive to quickly narrow the debugging scope from
network level or device level to table level, then use the break
and next primitives to decompose the match-action table into
three steps and troubleshoot the runtime bugs step by step. We
implemented a prototype of P4DB and evaluated the performance
in terms of the data plane, control plane and control channel. On
P4-specific programmable data plane, P4DB merely introduces
a small throughput penalty (1.3%∼13.8%) and imposes a little-
increased delay (0.6%∼11.9%).

I. INTRODUCTION

P4 [1], a recently proposed domain-specific language, en-

ables operators to customize the behavior of a programmable

data plane (PDP). It allows operators to make extensive

innovations on the network protocols by decoupling custom

protocol implementations from underlying switch code.

To support new protocol formats and operations, P4 em-

powers operators to define various programmable elements

in a P4 program. Operators can customize the parser to

extract header fields complied with particular protocol for-

mats. In the match-action table (MAT), operators can define

the match fields, the permissible compound actions
and primitive actions. Moreover, operators can orga-

nize various MATs as a complex Direct Acyclic Graph (DAG)

in the control flow. Besides, operators can declare data

plane variables such as metadata, registers, to perform

complex protocol operations. At runtime (i.e., while the switch

is forwarding packets), the controller can manage the table
entries in the MATs. Many, recently, proposed researches,

such as [2], [3], show that P4 can greatly accelerate the

innovation of network protocols and functions.

However, with so many programmable elements being

available for manipulation, the P4 programs, like all other

software developed by human, are inevitably prone to errors.

These errors can be mainly categorized into two types. One

is compile-time errors that can be detected at compile time.

Another is runtime errors that cannot be detected at compile

time and may cause diverse misbehaviors after the program

is deployed onto the device. In this paper, we are the first to

focus on debugging the runtime bugs of P4 programs.

Debugging the runtime bugs of P4 programs is a rather

difficult task, and faces the following challenges:

Diversity. Runtime bugs may happen to any programmable

elements in diverse styles. For example, operators may mistake

a wrong metadata for the right one when defining the

predication expression (i.e., if-else statement), make a logic

error in defining the control flow, etc. Accordingly, these

bugs can cause diverse kinds of misbehaviors at runtime such

as malformed packets, packet loss, packet loops, etc.

Complexity. As P4 programs grow in size, operators can be

overwhelmed by the complexity of troubleshooting runtime

bugs. Take the switch.p4 program in the P4 github repository

[4] as an example. The switch.p4 contains over 10K LoC,

129 MATs, 76 predication expressions and 340 compound
actions. Thus, when an operator wants to find out why a

packet is not forwarded as expected, he has to dump all table

entries in MATs and reason the bugs out table by table. The

dynamic metadata referenced in switch.p4 further adds up

the debugging complexity.

Invisibility. In the P4 program, most programmable ele-

ments such as metadata, control flow, primitive
action, etc., are not visible to operators at runtime, but

are vital for debugging. For example, once the program is

deployed onto the device, the logic defined by the control
flow, like “hard-coded logic”, cannot be observed by op-

erators. Thus, operators cannot directly see the MAT path

(trace of the packet among different MATs) of the packet. This

invisibility of programmable elements necessarily aggravates

the difficulty in debugging programs at runtime.

Therefore, with the booming of the PDP, debugging the

runtime bugs is becoming an intricate and challenging task.

However, existing debugging tools are mainly dedicated for

OpenFlow-based [5] SDN and cannot be simply ported to han-

dle runtime bugs of P4-enabled networks. Some of them are

designed for the control plane and are out of the scope of this

paper for their inability of verifying data plane behaviors. The

others are designed for the data plane and can be categorized

into two types:

Firstly, debugging tools such as [6], [7], [8], [9], [10], [11],

etc., are based on the runtime-monitoring technique. They

merely focus on the table entries without consideration978-1-5090-6501-1/17/$31.00 c© 2017 IEEE

S2S1

S3

Predication Match Action

Q1: What is the network
path of my packet?

Q2: What is the table path
of my packet?

Q3: What did the MAT do
to my packet?

MAT MAT

MAT

watch

feedback

feedback

watch

feedback

P4DB

attach

P4DB

break, next
P4DB

detach

network-level view

device-level view

table-level view

Figure 1. Debug the PDP program with P4DB

of other programmable elements. Besides, they also suffer

from the large performance overhead of monitoring.

Secondly, other debugging tools such as [12], [13], [14],

[15], [16], are based on the static analysis technique. Due to

the limitation of static analysis, they cannot adaptively model

the changes to forwarding behaviors without reprogramming

the internals. Moreover, they usually regard the data plane

model as the correct input model to generate the probe packets

or simulation baseline. Thus, they cannot detect the bugs inside

the P4 program and will cause false-positive problems.

Debugging the PDP is a rather new topic. As far as we know,

there are two debugging tools for P4. However, neither of

them can be utilized to troubleshoot the runtime bugs. A static

analysis tool is proposed in [17] to verify the reachability and

well-formedness of packets. However, this tool cannot be used

to troubleshoot the runtime bugs due to the limitation of static

analysis. Besides, the software debugger in BMv2 project is

used to find the bugs in the development stage. However,

guaranteeing the correctness in the simulation environment

cannot ensure the correctness after deployment.

This paper introduces P4DB, a general debugging platform

with three novel designs, to address aforementioned chal-

lenges.

1) The debugging primitives provide simple and usable

interfaces for operators to simplify the debugging workflow

(Complexity). So operators can avoid dumping all table entries

in MATs and reasoning the bugs out table by table. These

debugging primitives include attach, detach, watch, break,

next, etc.

2) The debugging snippets are designed to report states

of diverse programmable elements on data plane (Diversity &
Invisibility) and implement debugging primitives. A debugging

snippet, in essence, is an on-data-plane code piece that can be

flexibly inserted into special positions within the P4 program

and report user-interested states to P4DB at runtime.

3) The three-step decomposition is devised to decompose

the MAT along with its predication expression equivalently

into three steps including predication step, match step and

action step (Diversity & Invisibility). Therefore, operators can

use break and next primitives to inspect in detail the execution

of the MAT in a single-step way.

By P4DB, operators can flexibly scrutinize the P4 program

in three different levels of visibility.

• Network-level visibility provides operators with the net-

work path of the specified flow.

• Device-level visibility provides operators with the MAT

path of the specified flow in a running P4 program.

• Table-level visibility enables operators to see the process-

ing of the packet step by step in the decomposed MAT.

Therefore, as shown in Figure 1, when debugging the P4

program, operators can use the watch primitive to narrow

quickly the debugging scope from network level to some

specific table level. Then operators can use the break and

next primitives to decompose one MAT and to observe in

detail what is happening to the packet at runtime.

In this paper, our contributions are as follows:

• To the best of our knowledge, P4DB is the first design

of an on-the-fly debugging platform used to troubleshoot

runtime bugs in P4-enabled networks. We demonstrate

P4DB’s viability and usability by a real-world example.

• In P4DB, we propose three novel designs to (i) facilitate

troubleshooting various runtime bugs, (ii) simplify the

debugging workflow and (iii) provide different levels of

visibility.

• We implemented a prototype of P4DB based on two

recently proposed PDPs: P4-specific PDP and hypervisor-

specific PDP. Accordingly, we made comprehensive eval-

uations of P4DB. Results indicate that P4DB merely takes

a small performance overhead.

The remainder of this paper is organized as follows. We

discuss the related work in section II. Then Section III

describes the philosophy and generality of P4DB. The key

designs of P4DB are shown in Section IV. Afterwards, in

Section V, the debugging workflow of P4DB is demonstrated

through a real-world example. In Section VI, we evaluate the

performance of P4DB. Finally, we discuss the feasibility of

P4DB in Section VII, and make a conclusion in Section VIII.

II. RELATED WORK

At the time of writing this paper, few researches focus on

debugging the P4 programs. In a technique report [17], the

author proposes a static analysis tool that can compile P4 to

Datalog, so that this verification model can be automatically

updated as the P4 program is changed. However, due to the

constraint of static analysis, this tool cannot handle the runtime

bugs. Besides, as mentioned above, this tool also takes P4

programs as the input, and cannot resolve the false-positive

problems. On the contrary, P4DB provides operators with full

visibility of the data plane states at runtime and is not designed

for any specific type of runtime bugs.

The software debugger provided in BMv2 [4] enables

operators to debug the P4 program during development stage.

However, this tool only provides a coarse-granularity verifi-

cation at the development stage, and is incapable of handling

runtime bugs after deployment.

As previously discussed, other debugging tools are proposed

to debug the data plane in OpenFlow-based SDN, and are not

feasible for P4-enabled networks. Due to the space reason, we

only discuss the most relevant researches as follows.

In particular, ndb [6] and its successor NetSight [7] seem to

share a similar idea of providing interactive debugging com-

mands with P4DB. For example, ndb provides the breakpoint
primitive. However, according to the author, the breakpoint,
in essence, is a trace point which is similar with our watch
primitive. The reason for keeping the breakpoint terminology

is to maintain its familiarity in program debugging. Contrarily,

the break primitive in P4DB focuses on the behavior of the

MAT instead of packets, and innovatively decomposes the

MAT into three sequential steps. Besides, P4DB also enables

operators to use next primitive to debug the MAT in a single-

step way after the break snippet is triggered.

Moreover, even taking the traffic compression technique

used in ndb and NetSight into account, they still suffer from a

large overhead of generating postcard traffic for every packet

on the data plane. Additionally, they need to modify the data

plane to implement the debugger. Comparing with ndb and

NetSight, P4DB utilizes the on-data-plane damper to suppress

efficiently the reporting traffic, and does not need to modify

the implementation of the PDP.

III. OVERVIEW OF P4DB

A. The Philosophy of P4DB
Most bugs arise from mistakes and errors made in either

a program’s source code or its design. Therefore, the most

efficient way to debug is to allow programmers to locate

directly and see what is happening. In operating systems,

programmers can load the application’s source code into the

debugger such as the gdb, then insert the breakpoint into

the source code and directly check what is happening at

runtime. When a programmer sets the breakpoint for the

program. Internally, a small piece of “trap code”, that switches

the execution subject from the program to the debugger, is

dynamically inserted into the program by gdb.

P4DB shares the similar basic idea with gdb in operating

systems. Although, there is no trap instruction that enables op-

erators to stop the execution of P4 programs, in P4DB, pieces

of “report code”, called debugging snippets, are designed to

report the states of the programmable elements. Actually, a

debugging snippet is a simple DAG of MATs devised to report

the on-data-plane states of user-interested flows. Besides,

different combinations of debugging snippets can be used to

implement the user-friendly debugging primitives for opera-

tors. So operators can load the P4 program, use debugging

primitives to embed dynamically the debugging snippets into

the program, and debug the program at runtime. This way of

using debugging snippets to implement debugging primitives

makes P4DB a general debugging platform which can be based

on various match-action-table architectures including RMT

[18] and dRMT [19].

B. The Generality of P4DB

Firstly, we will illustrate two recently proposed PDPs as

well as their pros and cons. Secondly, we will describe the

features that can be utilized by P4DB based on various PDPs.

1) The P4-specific PDP: The P4-specific PDP is the most

widely adopted and a pioneer in defining the PDP. In the P4-

specific PDP, the language model used in the P4 program,

is closely tied to the implementation model on the hardware

device. Therefore, P4 programs can fully benefit from the high

performance of the hardware device without any overhead of

model translation [20]. However, this tight coupling between

the high-level program and the low-level hardware device can

also lead to the result that every time operators change the P4

program, the interruption and reconfiguration of the hardware

device are unavoidable.
2) The Hypervisor-specific PDP: Recently, hypervisor-

specific PDPs such as Hyper4 [21] and MPVisor [22], are

proposed to decouple the high-level P4 program and the low-

level hardware device by adding a layer of light-weight hyper-

visor in-between. In this way, although there is a performance

overhead due to the additional hypervisor, P4 programs can

be changed without interrupting hardware devices.
3) Features on Various PDPs: Both the P4-specific PDP

and hypervisor-specific PDP have their own pros and cons,

and present their unique features in addition to the common

programmability of the programmable elements.

Therefore, P4DB is designed as a general debugging plat-

form that presents general debugging features by utilizing the

common programmability provided by various PDPs. Mean-

while, P4DB also presents the unique features of various PDPs

as special debugging features when being used to debug the

specific PDP. For instance, based on the hypervisor-specific

PDP, P4DB can benefit from the uninterrupted feature, while

it suffers from a performance overhead of model translation.

Oppositely, based on P4-specific PDP, P4DB provides high

performance and the language compatibility, but faces inter-

ruption of the data plane. The details of implementation upon

various PDPs will be described in IV-F.

IV. DESIGN OF P4DB

A. System Architecture

Figure 2 shows the architecture of P4DB. The automatic de-

bugging tool and command line interface (CLI) debugging tool

can be developed based on the debugging primitives provided

by the debugging platform. In this paper, we will illustrate the

default CLI debugging tool in P4DB. The debugging primi-

tives, internally, are implemented by different compositions of

debugging snippets. The PDP program manager maintains the

status of all P4 programs as well as their running instances.

Reconfiguration of the device will trigger the PDP program

manager to recompile the corresponding P4 program. The

PDP model manager maintains mapping of the particular PDP

model and the corresponding hardware device. The debugging

message service maintains the control channel between on-

data-plane debugging snippets and the debugging platform.

B. Three-step Decomposition of the MAT

In P4DB, we decompose one MAT into three sequential

steps: predication step, match step and action step. Predication

step (implemented by two MATs) is functionally equivalent to

the if-else statement bounded with the MAT in the control

Figure 2. Architecture of P4DB.

flow. Similarly, the match step (implemented by one MAT)

will only execute the match logic of the original MAT without

executing any actions. The action step will merely do the

action logic.

Based on this decomposition, P4DB can insert predication

snippet, match snippet and action snippet after each corre-

sponding decomposed step; collect the data plane states from

the debugging snippet; respectively show data plane states

for each step. Accordingly, operators can orderly use three

next primitive to verify the correctness of each step. The

implementation of the decomposition for different PDP models

will be discussed in Section IV-F.

1) Why We Need Decomposition?: The reason for decom-

position of the MAT is rather simple. Currently, the predication

logic, compiled like “hard-coded logic” between MATs, is

invisible to operators. Thus, even if the predication is wrongly

programmed, there is no convenient way to identify the bug

except manually reasoning the packet behavior.

As for match and action, they are closely coupled and

concealed in one MAT. Consequently, operators can only

review the results for the MAT instead of the behavior itself.

In the real-world debugging case, knowing (i) which fields are

matched for this packet and (ii) which actions and parameters

are executed for this packet is significant for the operators to

troubleshoot the bugs in the MAT. Thus, P4DB decomposes

the MAT into three steps, and enables operators to see directly

which behaviors are applied to which packet in the MAT.

2) Simulation of Single-step Debugging: Actually, although

one MAT can be decomposed into three steps, P4DB cannot

suspend the execution of the packet, and conduct the decom-

posed steps one by one. Thus in P4DB, we design a simulative

way. Our design, although a simulative one, is reasonable. The

basic purpose of P4DB is to let operators see what is wrong at

runtime. In operating systems, the programmer can merely see

the occurrence of the bug only after the bug is being triggered.

However, in the network system, the recurrence of the bug

in a P4 program can be triggered by millions of packets in

the same flow. In other words, there is no need to follow the

execution of one packet in order to see what is happening.

Instead, P4DB focuses on the P4 program itself and views

packets as triggers for bugs. As long as the bug can be

triggered by the consistent packets in the same flow, P4DB

can provide operators with a simulative single-step debugging.

And we will talk about this feasibility of bug recurrence in

Section VII.

C. Debugging Primitives

As shown in Figure 3, we design a suite of user-friendly de-

bugging primitives, so that operators can use these primitives

to debug the P4 program interactively via the CLI. Debugging

primitives are implemented by various compositions of debug-

ging snippets. For now, there are seven fundamental primitives;

however, with flourishing of debugging snippets, there will be

more debugging primitives to cut down the debugging costs.

The attach and detach primitives can dynamically at-

tach/detach the debugger to the instance of the P4 program

on some specific device. One program can only be debugged

by one CLI context, although operators can open multiple CLI

contexts to debug different programs at the same time. When

operators issue the attach primitive, P4DB will load the source

code of the P4 program; analyze the source code; check the

specific PDP model on the hardware device and prepare for

the debugging environment.

The watch primitive provides operators with two different

levels of visibility. One is the network-level visibility, which

will show the network path of the specified flow. Another is

the device-level visibility, which will show the MAT path of

the specified flow. Internally, P4DB inserts a number of watch

snippets into the switch or all switches, collects the reports,

and shows the trace of the flow.

The break and next primitives together enable operators to

debug one MAT with the table-level visibility. When the oper-

ator issues the break primitive, P4DB internally decomposes

the MAT and inserts the break snippet. Once the break snippet

is triggered by the specified flow, operators can issue the

next primitive to let P4DB dynamically install the predication

snippet into the decomposed MAT. Then operators can observe

the states of predication. Afterwards, the following two next
primitives will respectively install the match snippet and action

snippet, and present states of the match step and action step.

Other primitives such as rmbp and show are trivial to be

thoroughly described.

D. Debugging Snippets

1) Design of Debugging Snippets: The debugging snippet,

usually composed of one or more MATs, matches the flow

specified by operators and reports states of programmable

elements to the debugging platform. The match rules in debug-

ging snippet are instantiated by P4DB based on the parameters

in debugging primitives. The actions in debugging snippets are

Primitives Synopsis

1) attach program switch
 This primitive attaches the debugger to the P4 program on user

specified switch.
program :

 The name of the P4 program.
 switch :
 The identifier of the switch, usually the data path id.
 use case:
 /> attach myfirewall 100001

2) detach program
 This primitive detaches the debugger from the attached program.

program :
 The name of the P4 program.

3) break [-n name] –t tablename –f {[field : value], … }
 This primitive sets a breakpoint to the match-action table specified by

tablename, and chooses the flow specified by the set of field and
valule pairs to be debugged. The next primitive always follows the
break primitive.

 tablename :
 The name of the table that is being debugged.
 name :
 The optional name of the breakpoint defined by user.
 field :
 The name of the field. A field can be any field declared in the

P4 program, e.g. a header field or a metadata.
 value :
 The specific value of the field.
 use case:
 \> breakpoint –n mybp –t table_ipv4 –f {eth_hdr:0x1f

2f3f4f, ip_src:192.0.0.1, ip_dst:192.0.0.2}
4) next

This primitive will go through one step when the break primitive is
triggered. Each next command will illustrate the information of
predication, match and action step respectively.

5) watch [-s switch] –f {[field : value], … }
 This primitive will illustrate the path information of a flow specified

by the condition set of field and value.
 switch :

 If the switch is specified, watch primitive will show the table
path traversed by the specific flow, otherwise, it will show
the network path traversed by the specific flow.

 field :
 The name of the field. A field can be any field declared in the

P4 program e.g. a header field or a metadata.
 value :
 The specific value of the field.

 use case:
 \> watch –s 100001 –f {ip_src:192.168.0.0.1, user_met

a_var:2}
6) show [-b] [-p] [-a] [-t] [-h]

 This primitive shows the information of corresponding object.
 -b:
 This option shows the information of all breakpoints.
 -p:
 This option shows the information of all programs.
 -a:
 This option shows the information of all compound actions.
 -t:
 This option shows the information of all tables.
 -h:

 This option shows the information of all header fields
declared in the P4 program.

7) rmbp name
 This primitive removes the breakpoint specified by the name.

use case:
 \> rmbp mybp

Figure 3. Debugging primitives.

Data Plane

t2Watch
Snippet

Watch
Snippet

Watch
Snippet

t1

t3
Flow A
[dl_src: 0x111, …]

Flow B
[dl_src: 0x222, …]

\> watch –f {dl_src:0x111, …}
\> watch –f {dl_src:0x222, …}
Trace information:
Flow[dl_src: 0x111, …] : ingress t1 t3 egress
Flow[dl_src: 0x222, …] : ingress t1 t2 egress

CLI

Figure 4. Design of watch snippets.

set to report different programmable elements according to the

types of debugging snippets. Once the debugging snippet is

deployed on the data plane, it will match the flow, and use

the generate digest action to send the reporting traffic to the

debugging platform. For now, there are five types of debugging

snippets.

Watch Snippet: The watch snippet is implemented by one

MAT. The match rules in the watch snippet are set according to

the parameters in the watch primitive. The actions in the watch

snippet are set to report two kinds of information, including

(i) the table entry, by which the debugging platform can

distinguish different specified flows; (ii) the identifier of the

watch snippet, by which the debugging platform can identify

the location of the watch snippet.

As shown in Figure 4, when the operator uses the watch
primitive to observe flow A and flow B. P4DB will install one

watch snippet for every MAT. If both flows do exist, then the

watch snippets will report the flow traces to the debugging

platform.

Break Snippet: The break snippet, together with the pred-

ication snippet, match snippet and action snippet enables

operators to debug the MAT in a fine-grained way as shown

in Figure 5. When an operator issues the break primitive

for one MAT, P4DB will decompose the MAT and install

the break snippet. The break snippet is implemented by one

MAT and reports the data plane states, including packet header,

metadata, etc., to the debugging platform when triggered by

the specified flow.

Predication Snippet: The predication snippet, between the

predication step and the match step, is implemented by one

MAT to report programmable elements that are referenced

in the predication expression. If the original MAT does not

have any predication expression, the predication step will do

nothing but pass the flow to the match step. Notably, the

specified flow will firstly be matched in predication step, then

be passed to the predication snippet, while the normal flow

will not be passed to the predication snippet. In the CLI,

P4DB presents the predication expression as well as values

to referenced variables. Hence, operators can check whether

Control Plane

Data Plane

if (srcPort > 8080) apply(table_foo);

if (srcPort > 8080)
apply(table_foo);

Predication
Snippet

Match
Snippet

Action
Snippet

Predication
Step

Match
Step

Action
Step

Break
SnippetNormal Flow

Debugged Flow

P4DB Debugging Platform

break next next next

P4 program
Compile

Figure 5. Design of break-predication-match-action snippets.

the boolean expression in predication is correct.

Match Snippet: The match snippet, implemented by one

MAT, reports the match fields and values for the speci-

fied flow in the match step. By the match snippet, operators

can inspect which table entry is matched by the specified

flow, and verify correctness of match rules. The match snippet

also merely processes the debugged flow.

Action Snippet: The action snippet, implemented by one

MAT, reports packet headers, actions and action parameters

to the debugging platform. By the action snippet, operators

can verify whether the specified flow is correctly executed as

expected. Notably, the action step will process the specified

flow and pass the flow to the action snippet. Then in the action

snippet, the specified flow will trigger the action snippet to

report which actions and parameters have been taken in the

action step. The match rules and actions in the action snippet

are instantiated when P4DB installs the action snippet.

2) Management of Debugging Snippets: P4DB adopts two

ways of implementation for managing (installation/deletion)

the debugging snippets. One is the on-demand way, another

is the proactive way. Both implementations have their pros

and cons. As for the on-demand way, P4DB will not install

the debugging snippet until operators issue the corresponding

debugging primitive, and will delete the debugging snippet

after operators issue another debugging primitive. For ex-

ample, P4DB will delete the predication snippet and install

the match snippet only after operators issue the second next
primitive. In P4DB, the break snippet, predication snippet,

match snippet and action snippet are designed in this way.

This way can guarantee that debugging snippets are always

triggered by the latest inbound traffic and present on-data-

plane states in real time. Besides, this way also causes a small

performance overhead, since it does not need to install all

relevant debugging snippets into the P4 program.

As for the proactive way, P4DB will install all related

debugging snippets once the operators issue the debugging

primitive. The watch snippet is designed in this way. When

operators issue the watch primitive, P4DB will install the

watch snippet for every MAT in the P4 program. This way may

suffer from a performance overhead of multiple debugging

snippets running on the data plane. However, it can collect

much more data plane states in case the specified flow is too

short to be consistently debugged.

E. Performance Optimization

In a network, millions of packets may pass through the

data plane in every second. Since P4DB provides operators

with live debugging ability by using on-data-plane debugging

snippets, how to reduce the performance overhead becomes

an important task. Actually, the purpose of the debugging

snippets is to (i) filter the specified flow and (ii) send the

reporting traffic. Accordingly, we propose two designs to

reduce the performance overhead in terms of filtering and

reporting respectively.

1) Placement of Filtering: The placement of filtering will

directly impact the performance of the data plane. In P4DB,

two ways of placement are adopted in consideration of trade-

offs for different debugging snippets.

One is to place the filtering rules for specified flows outside

the debugging snippet, e.g., the filter rules can be placed in the

match step, then the match step will filter the specified flow

and pass the chosen flow to the match snippet. In this way,

only chosen flows will be passed to the debugging snippet, and

other normal traffic will bypass the debugging snippet. From

Figure 5, we can see that the predication snippet, match snippet

and action snippet adopt this way. This way of placement can

effectively reduce the performance overhead, although it has

a limitation in expressing the filtering rules. Since it requires

that the debugged flow can be exactly matched by the MAT

outside the debugging snippet.

Another is to place the filtering rules inside the debugging

snippet, and use the debugging snippet itself to filter the

specified flow. In this way, all traffic, no matter whether it is

being debugged or not, will pass through both the debugging

snippet and the original procedure. As shown in the Figure 4

and Figure 5, the watch snippet and break snippet adopt this

way of implementation. Although this way of implementation

may impose an extra overhead for filtering, it offers more

flexibility in customizing matching rules for various debugged

flows.

2) Message Damper for the Reporting Traffic: The report-

ing traffic also directly impacts the performance of the data

plane and control channel. A large volume of reporting traffic

necessarily incurs high CPU usage in switch as well as the

congestion in the control channel.

Therefore, we design an on-data-plane message damper

to suppress the reporting traffic. The message damper is

implemented by periodically sampling packets in the debugged

flow. The message damper maintains an adjustable threshold

and a loop counter for each debugged flow. The threshold

defines the period for sampling, while the loop counter counts

the number of matched packets in the debugged flow. When

the counter reaches the threshold, it will be reset to zero and

trigger the debugging snippet to send one reporting packet.

The threshold can be dynamically adjusted by operators. The

message damper greatly reduces the performance overhead in

the data plane, meanwhile maintains the debugging function-

alities of P4DB.

F. Implementation on Different PDPs

P4DB hides the heterogeneity of underlying PDPs and

provides operators with a unified interface of debugging. This

generality is internally implemented by maintaining one PDP

driver for every type of PDP. In this paper, we respectively

implement P4DB on a P4-specific PDP and a hypervisor-

specific PDP. Details of implementation can be found in the

source code of P4DB. In this section, we will discuss the

implementation of decomposed MAT for different PDPs.

In the P4-specific PDP, the predication and the MAT are

closely coupled to the control flow. Therefore, in order

to implement the decomposition of the MAT, we use two

techniques. (i) As for the predication step, we manage to use

a pipeline of two delicately designed MATs to represent the

function of the predication expression equivalently. Based on

this technique, the predication expression can be abstracted

and equally expressed by the predication step. (ii) As for the

match step and action step, the We add a redundant MAT

that merely matches the flow without executing any actions to

implement the match step. In the action step, the MAT will

execute the actions. As for the hypervisor-specific PDP, since

the execution of one MAT is already decomposed based on

their designs, therefore, P4DB can be readily implemented on

the hypervisor-specific PDP.

V. DEBUGGING WORKFLOW OF P4DB

Device-level View

Table-level View

Network-level View

Host A

Host C

Switch 2Switch 1

Switch 3

Host B

Error
Path

Correct
Path

Watch
Snippett1 t2

t3

t4
Watch

Snippet
Break

Snippet Watch
Snippet

Watch
Snippet

Predication
Step

Match
Step

Action
Step

Predication
Snippet

Match
Snippet

Action
Snippet

Switch 4

Zoom in Switch 2

Zoom in t2

Figure 6. The debugging workflow of P4DB

In this section, we will illustrate the debugging workflow of

P4DB through a real-world example shown in Figure 6. The

debugging platform of P4DB maintains up-to-date status of

all running P4 instances and devices. Host A is sending traffic

to Host C. However, the traffic always goes through the error

path (shown as the red dashed line) rather than the correct

path (shown as the green line). The operator has checked the

control plane applications and table entries in the data plane,

and has found nothing wrong. Therefore, the operator starts to

debug the running instance on Switch 2 to find out the bugs. In

the following part, we will describe the debugging workflow

step by step.

#1: The operator initializes the debugging context from CLI,

uses the show primitive to check the name of the PDP

instance on Switch 2, and issues the attach primitive to

attach the default debugger to the running instance.

#2: Then the operator starts to debug the flow from Host A
to Host C by issuing the watch primitive with parameters

of source address and destination address. Afterwards, as

long as the specified flow continues, the operator will see

the device-level trace of the specified flow through the

CLI.

#3: The operator finds that the trace of the flow is t1→t2→t4
rather than t1→t2→t3. Therefore, he decides to debug t2
in table-level visibility.

#4: The operator uses show primitive to get the name of t2,

and issues break primitive to t2 with the parameters of

source address and destination address. Then the consis-

tent flow will trigger the breakpoint.

#5: Afterwards, the operator issues the next primitive to check

the predication logic. CLI shows the original predication

expression which is none for t2. Nothing is wrong in this

step.

#6: Then the operator again issues the next primitive to

check the match logic. The operator verifies the match
fields and values shown in the CLI, and finds nothing

wrong either.

#7: The operator issues the third next primitive, verifies the

variables and packets referenced in the action step, and

finds that one referenced metadata is not modified

as expected. Thus this wrong metadata leads to the

erroneous branching in the if-else statement after t2.

#8: The operator checks the actions that are executed in action

step, and finally finds that two dependent primitive
actions in the compound action are disorderly

called. Thus, the bug is found!

#9: Lastly, operator uses the detach primitive to stop debug-

ging. The P4DB internally removes all debugging snippets

on the data plane.

Actually, the bugs, like calling dependent primitive
actions with a wrong order, are not rare in current P4

programming. Since, the execution pattern of primitive
actions is defined as the serial pattern and the parallel

pattern respectively in two versions of P4 language specifi-

cation (P4 and P4-16). Thus, without the full knowledge of

hardware implementation and specification, operators are more

prone to making these mistakes.

VI. EVALUATION

A. Overview

We implemented P4DB on ONOS controller [23], and eval-

uated the performance of P4DB on the P4-specific PDP and

the hypervisor-specific PDP accordingly. As previously men-

tioned, there are two ready-made hypervisor-specific PDPs:

MPVisor and Hyper4. We choose MPVisor to conduct our

experiments, for its improvement on performance and resource

efficiency. The source code of P4DB can be found at https:

//P4DB.github.io/.

Figure 7. The router program with debugging snippets.

Our experiments are conducted on two x86 servers, each

of which has 2×4 Intel E5-2637 CPU 3.50Ghz cores and

64GB memory. At the time of writing this paper, we do

not have a P4 hardware device, thus, we use BMv2 as our

device target for MPVsior and P4-specific PDP. The ONOS

and BMv2 run on different servers. In our evaluation, we

use the classic router.p4 program as the P4 program under

test. As shown in Figure 7, router.p4 has three MATs and

one predication expression. And we will install five kinds of

debugging snippets into the program.

Since P4DB will insert debugging snippets into the orig-

inal router program and lengthen the pipeline, it inevitably

influences the throughput and delay of the router. Besides, the

debugging snippets can generate a large volume of reporting

traffic, and may congest the control channel and exhaust the

CPU resource in the control plane. Therefore, we evaluate the

performance of P4DB via three aspects: (i) data plane, (ii)
control plane and (iii) control channel.

B. Performance of the Data Plane

As for the data plane, we take three groups of tests to

demonstrate how different determinants can impact the per-

formance. All three groups of tests are measured based on

MPVisor and the P4-specific PDP respectively. Within each

group, we conduct two benchmark tests respectively in terms

of throughput and round trip delay. In each benchmark test,

we add the performance of router.p4 running without P4DB

as the baseline to see the performance overhead. The metrics

for each group are as follows:

Group 1 Performance benchmarks in terms of different num-

ber of watch snippets without message damper

Group 2 Performance benchmarks in terms of different types

of debugging snippets without message damper

Group 3 Performance benchmarks in terms of different

damper thresholds with message damper enabled

1) Analysis of Group 1: Table I shows the performance

benchmarks with different numbers of debugging snippets on

two PDPs.

Throughput: Both P4-specific PDP and MPVisor incur a

throughput degradation as the number of debugging snippets

increases. However, the degradation on MPVisor is much faster

Table I
THE PERFORMANCE BENCHMARKS WITH DIFFERENT NUMBERS OF

WATCH SNIPPETS ON P4-SPECIFIC PDP AND HYPERVISOR-SPECIFIC PDP

No. of P4 MPVisor
watch snippets Throughput Delay Throughput Delay

0 (baseline) 918.3 Mbps 0.278 ms 333.8 Mbps 0.331 ms
1 917.7 Mbps 0.300 ms 217.5 Mbps 0.352 ms
2 901.9 Mbps 0.291 ms 201.7 Mbps 0.388 ms
3 867.2 Mbps 0.309 ms 180.8 Mbps 0.406 ms
4 791.6 Mbps 0.311 ms 163.7 Mbps 0.418 ms

than P4-specific PDP. Since the internal control logic and

model decoupling in MPVisor is rather complex, it amplifies

the impact of the debugging snippets.

Delay: The number of debugging snippets seems to have

little influence on the P4-specific PDP. The fluctuation of

the results mainly comes from the indeterministic factors in

BMv2’s implementation. Unlike the processing delay on P4-

specific PDP, the number of watch snippets do have an impact

on the processing delay of MPVisor. As previously stated,

MPVisor provides the uninterrupted feature, while suffers from

the overhead for model translation.
2) Analysis of Group 2: Figure 8(a), Figure 9(a); Figure

8(b) and Figure 9(b) show the performance benchmarks with

different types of debugging snippets on two PDPs. In these

figures, the abbreviations such as NS, MS, etc., are illustrated

in the abbreviation table shown in Figure 7. Notably, NS
denotes the baseline performance. To control variables in the

experiments, we only install one type of snippets at one time.

Throughput: Figure 8(a) and 9(a) show throughput with

different types of debugging snippets. The router program

with four watch snippets performs worst. Comparing with the

baseline, it merely achieves 791.6 Mbps with a throughput

penalty of 13.8% on the P4-specific PDP, and 163.7 Mbps

with a throughput penalty of 51% on MPVisor. However, on

the P4-specific PDP, the other types of debugging snippets only

have a performance degradation of few percents. Besides, the

throughput penalty on MPVisor is larger than on P4-specific

PDP, and ranges from 32.7% to 38.5% comparing with its

baseline.

Delay: As shown in Figure 8(b) and 9(b), results are still

quite different on respective PDPs. As for the P4-specific

PDP, there is little difference among the baseline and various

debugging snippets in terms of delay. However, for MPVisor,

the increase of the delay ranges from 15% to 26% comparing

with the baseline.
3) Analysis of Group 3: In this group, we test the router

program with one break snippet as well as with the message

damper enabled, to further inspect how the message damper

impacts the performance. In the experiment, throughput and

delay will be measured with different damper thresholds.

Notably in these figures, the router without P4DB which is

denoted as “no snippet” and the router with one break snippet

but without damper which is denoted as “ the break snippet

without damper”, are respectively depicted as two baselines

for a comprehensive comparison.

Throughput with the damper enabled: As shown in Figure

8(c) and 9(c). The throughput increases as the threshold

�� �� �� �� �� ��

���

���

���

���

���

���

����

�
�
��
�
�
�
�
�
�	

�

�
�

�

���	
��	

���
��������
�������

������
���
�

����

���������

(a) Throughput.

�� �� �� �� �� ��

����

����

����

����

����

����

����

����

����

����

�
�
�
�
�
��
�	

��
��

�
��
�
��

(b) Delay.

� �� �� �� �� ��

���

�	�

	��

	��

	��

	��

		�

��

��

��

�
�
��
�
�
�
�
�
�	

�

�
�

�

��������	��
	��

�������
����������	�
�����

����
������

�������
����������	����
�����

(c) Throughput with damper.

� �� �� �� �� ��
����

����

����

����

���	

����

����

����

����

���	

����

�
�
�
�
�
��
�	

��
��

�
��
�
��

��������	��
	��

��
��
�����
�
����
����
�

��
�����
�

��
��
�����
�
�������
����
�

(d) Delay with damper.

Figure 8. Performance and overhead of debugging snippets running on the
P4-specific PDP.

�� �� �� �� �� ��

���

���

���

���

���

���

���

�
�
��
�
�
�
�
�
�	

�

�
�

�

����	
��

���
��������
�������

������
���
�

����

���������

(a) Throughput.

�� �� �� �� �� ��

����

����

����

����

����

����

����

����

�
�
�
�
�
��
�	

��
��

��
��

��

(b) Delay

� �� �� �� �� ��

���

���

���

���

���

���

�
�
��
�
�
�
�
�
�	

�

�
�

�

��������	��
	��

�������
����������	�
�����

����
������

�������
����������	����
�����

(c) Throughput with damper.

� �� �� �� �� ��

����

����

����

����

����

����

����

����

����

���������	

����	�
����
��

������	

��

���������	

����	�
�������
��

�
�
�
�
�
��
�	

��
��

�
��
�
��

���
����
���
���

(d) Delay with damper.

Figure 9. Performance and overhead of debugging snippets running on the
hypervisor-specific PDP.

� �� �� �� �� ��

���

���

���

���

���

���

���

�
�
��

��
��
	

�
�
��

��������	��
	��

�������

����
������

�������
������

Figure 10. Debugging messages in
the control channel.

� �� �� �� �� ��

�

�

�

�

�

�

�

�

	

�
�
�
��
��
�
	�

�

�

��������	��
	��

��
��
��������������

��
��
��������������

��
��
��������������

��
��
��������������

��
��
��������������

��
��������

Figure 11. CPU usage with different
numbers of debugged switches.

becomes larger. However, even if the threshold reaches as

many as 50, the throughput is still smaller than the throughput

of “the break snippet without the damper”. Besides, on the

P4-specific PDP, when the threshold is larger than 10, the

increasing of throughput tends to be more stable. While, on

MPVisor, the increasing of throughput becomes stable after

the threshold is larger than 30.

Delay with the damper enabled: As shown in Figure 8(d)

and 9(d). Overall, the message damper has a little positive

effect on the processing delay. As the damper threshold

increases, the delay deceases. On P4-specific PDP, the delay

can even be the same as the baseline delay of “no snippet”.

However, the effect of the threshold is mitigated on MPVisor.

4) Summary: The performance of P4DB is quite different

on P4-specific PDP and MPVisor. The difference can be

mainly explained by the performance degradation caused by

MPVisor itself. As previously mentioned in Section III-B,

although MPVisor provides some special debugging features
such as the uninterrupted reconfiguration of the PDP, it suffers

from the performance overhead of model translation. On the

other hand, on P4-specific PDP, P4DB provides a minor

performance overhead and faces interruption of the data plane,

even though the interruption time is usually under 50 ms

according to [20].

Debugging snippets are inserted into the pipeline to improve

the visibility of the data plane, and inevitably lead to a

performance overhead. Since for runtime debugging, there

is a trade-off between runtime visibility and performance.

However, we think introducing the promising ability of on-

the-fly debugging of runtime bugs with a certain degree of

performance degradation is worthy especially in the case of

network errors.
C. Control Channel and Control Plane

As for control channel and control plane, since they are

agnostic to the underlying PDPs, we accordingly evaluate the

(i) debugging message in the control channel and (ii) the CPU

usage in the control plane.

Firstly, we measure the number of packets in the control

channel in terms of different damper thresholds. The rate

of the background traffic is 2Kpps. Secondly, we profile the

runtime CPU usage to show that P4DB does not impose the

substantial burden onto the controller with the help of the

message damper. We measure the CPU usage in terms of

different damper thresholds. Based on that, CPU usages with

different numbers of debugged switches are also measured.

1) Analysis of Debugging Messages: As shown in Figure

10, the message damper has a sound effect on the number of

packets in the control channel. When the damper threshold

reaches 50, the number of packets generated by the break

snippet is almost as same as the router with “no snippet”.

With the help of the message damper, P4DB can adaptively

adjust the threshold and prevent debugging snippets from

overwhelming the control channel.

2) Analysis of CPU Usage: The CPU usage of the central-

ized controller is measured to illustrate two issues. The first is

the scalability issue that may be caused by P4DB. As can be

seen in Figure 11, when the damper threshold is set to zero, the

P4DB requires more CPU resource to process the workloads

as the number of debugged switches increases. The second one

is the impact of the message damper. We can see that when

the message damper is added into the debugging snippet, the

CPU usage declines rapidly. And the CPU usage declines to

below 0.3% in all tested scenarios, when the damper threshold

is set to 50.

3) Summary: P4DB imposes a certain overhead on the

control channel and the control plane. However, operators can

adaptively adjust the damper threshold to reduce the overhead

from the reporting traffic generated by debugging snippets.

And our experiments show that the damper performs well in

terms of mitigating the pressure of control channel as well as

the control plane.

VII. DISCUSSION OF FEASIBILITY

As previously mentioned, P4DB implements the manage-

ment of break, predication, match and action debugging snip-

pets in an on-demand way, and using the latest inbound

traffic as the trigger. Thus, it requires the flow to consistently

trigger the runtime bugs while the operator is debugging the

PDP. However, we consider this prerequisite of recurrence

of runtime bugs is rather common. For example, according

to [24], troubleshooting network bugs usually lasts for 30-

60 minutes which provides plenty of time for operators to

troubleshoot the bugs. Besides, for flows that are really too

short to be debugged, P4DB can readily collaborate with some

log-based debugging tools to troubleshoot the bugs.

Another concern is about which kinds of bugs P4DB

can deal with. Actually, P4DB intends to provide a general

debugging platform based on different PDPs. P4DB focuses

more on providing sets of convenient debugging primitives

and entire visibility of data plane status for operators, thus is

agnostic to the specific types of bugs.

VIII. CONCLUSION

This paper, for the first time, is devoted to the on-the-fly

debugging of runtime bugs in P4-enabled networks. P4DB

is proposed as a general debugging platform that empowers

operators to debug diverse runtime bugs with simplicity and

visibility. In P4DB, we propose three novel designs including

(i) the debugging primitives, (ii) the debugging snippets, and

(iii) the three-step decomposition of the MAT. Evaluation

results show that P4DB enables operators to troubleshoot the

runtime bugs in P4-enabled networks and only incurs a small

performance overhead. In the future work, we plan to enrich

the set of debugging primitives and develop automatic debug-

ging applications based on the P4DB debugging platform.

IX. ACKNOWLEDGEMENT

This research is supported by National Key R&D Program

of China (2017YFB0801701) and the National Science Foun-

dation of China (No.61472213). Jun Bi is the corresponding

author. We gratefully thank all anonymous reviewers.

REFERENCES

[1] Pat Bosshart and et al. P4: Programming protocol-independent packet
processors. SIGCOMM Comput. Commun. Rev., 44(3):87–95, July 2014.

[2] Mojgan Ghasemi and et al. Dapper: Data plane performance diagnosis
of tcp. In Proceedings of the Symposium on SDN Research, SOSR ’17,
pages 61–74, New York, NY, USA, 2017. ACM.

[3] Vibhaalakshmi Sivaraman and et al. Heavy-hitter detection entirely in
the data plane. In Proceedings of the Symposium on SDN Research,
SOSR ’17, pages 164–176, New York, NY, USA, 2017. ACM.

[4] Barefoot Networks. P4-bmv2. Website. https://github.com/p4lang/
behavioral-model.

[5] Nick McKeown and et al. Openflow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March
2008.

[6] Nikhil Handigol and et al. Where is the debugger for my software-
defined network? In Proceedings of the First Workshop on Hot Topics
in Software Defined Networks, HotSDN ’12, pages 55–60, New York,
NY, USA, 2012. ACM.

[7] Nikhil Handigol and et al. I know what your packet did last hop: Using
packet histories to troubleshoot networks. In Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation,
NSDI’14, pages 71–85, Berkeley, CA, USA, 2014. USENIX.

[8] Ramakrishnan Durairajan and et al. Controller-agnostic sdn debugging.
In Proceedings of the 10th ACM International on Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’14,
pages 227–234, New York, NY, USA, 2014. ACM.

[9] Peng Zhang and et al. Mind the gap: Monitoring the control-data plane
consistency in software defined networks. In Proceedings of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, pages 19–33, NY, USA, 2016. ACM.

[10] Q. Zhi and et al. Med: The monitor-emulator-debugger for software-
defined networks. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9,
April 2016.

[11] Andreas Wundsam and et al. Ofrewind: Enabling record and replay
troubleshooting for networks. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Conference, USENIXATC’11,
pages 29–29, Berkeley, CA, USA, 2011. USENIX Association.

[12] Hongyi Zeng and et al. Automatic test packet generation. IEEE/ACM
Trans. Netw., 22(2):554–566, April 2014.

[13] Haohui Mai and et al. Debugging the data plane with anteater. In
Proceedings of the ACM SIGCOMM 2011 Conference, SIGCOMM ’11,
pages 290–301, New York, NY, USA, 2011. ACM.

[14] Peyman Kazemian and et al. Header space analysis: Static checking for
networks. In Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation, NSDI’12, pages 9–9, Berkeley,
CA, USA, 2012. USENIX Association.

[15] K. Bu and et al. Is every flow on the right track?: Inspect sdn forwarding
with rulescope. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications, pages 1–9,
April 2016.

[16] Peter Perešı́ni and et al. Monocle: Dynamic, fine-grained data plane
monitoring. In Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, CoNEXT ’15, pages 32:1–
32:13, New York, NY, USA, 2015. ACM.

[17] Nick McKeown and et al. Automatically verifying reachability and well-
formedness in p4 networks. Technical report, September 2016.

[18] Pat Bosshart and et al. Forwarding metamorphosis: Fast programmable
match-action processing in hardware for sdn. In Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 99–
110, New York, NY, USA, 2013. ACM.

[19] Sharad Chole and et al. drmt: Disaggregated programmable switching.
In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM ’17, pages 1–14, New York, NY,
USA, 2017. ACM.

[20] Barefoot Networks. Barefoot tofino. Website. https://barefootnetworks.
com/technology/.

[21] David Hancock and et al. Hyper4: Using p4 to virtualize the pro-
grammable data plane. In Proceedings of the 12th International on
Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’16, pages 35–49, New York, NY, USA, 2016. ACM.

[22] Cheng Zhang and et al. Mpvisor: A modular programmable data plane
hypervisor. In Proceedings of the Symposium on SDN Research, SOSR
’17, pages 179–180, New York, NY, USA, 2017. ACM.

[23] Pankaj Berde and et al. Onos: Towards an open, distributed sdn os. In
Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 1–6, New York, NY, USA, 2014. ACM.

[24] Hongyi Zeng and et al. A survey on network troubleshooting. Website.
http://yuba.stanford.edu/∼peyman/docs/atpg-survey.pdf.

