
IEEE/ACM TRANSACTIONS ON NETWORKING 1

P4DB: On-the-fly Debugging for Programmable
Data Planes

Yu Zhou, Jun Bi, Senior Member, IEEE, ACM, Cheng Zhang, Bingyang Liu,
Zhaogeng Li, Yangyang Wang, Mingli Yu

Abstract—While extending network programmability to a
more considerable extent, P4 raises the difficulty of detecting and
locating bugs, e.g., P4 program bugs and missed table rules, in
runtime. These runtime bugs, without prompt disposal, can ruin
the functionality and performance of networks. Unfortunately,
the absence of efficient debugging tools makes runtime bug
troubleshooting intricate for operators. This paper is devoted
to on-the-fly debugging of runtime bugs for programmable data
planes. We propose P4DB, a general debugging platform that
empowers operators to debug P4 programs in three levels of
visibility with rich primitives. By P4DB, operators can use the
watch primitive to quickly narrow the debugging scope from
the network level or the device level to the table level, then
use the break and next primitives to decompose match-action
tables and finely locate bugs. We implement a prototype of P4DB
and evaluate the prototype on two widely-used P4 targets. On
the software target, P4DB merely introduces a small throughput
penalty (1.3% to 13.8%) and a little delay increase (0.6%
to 11.9%). Notably, P4DB almost introduces no performance
overhead on Tofino, the hardware P4 target.

Index Terms—Programmable data plane, P4, data plane de-
bugger.

I. INTRODUCTION

PROGRAMMABLE data planes (PDP) together with
domain-specific languages, e.g., P4 [2] and POF [3], un-

leash a new wave of programming networks. Recent researches
[4]–[9] present a growing and promising trend that more and
more sophisticated network functions can be implemented
as P4 programs to run on programmable switches, which
significantly improves performance and flexibility of networks.

P4 provides various programmable elements for operators
to flexibly define packet-processing behaviors (i.e., forwarding
ports and header modification) on PDPs. Firstly, operators can
customize parsers to extract header fields with self-defined
protocol formats. Secondly, for match-action tables (MAT),

This work is supported by National Key R&D Program of China
(2017YFB0801701) and the National Science Foundation of China
(No.61472213). Yangyang Wang is the corresponding author.

Jun Bi and Yangyang Wang are with the Institute for Network Sciences
and Cyberspace, Tsinghua University, the Department of Computer Science,
Tsinghua University, and the Beijing National Research Center for Information
Science and Technology (BNRist), and CERNET Network Center, Beijing
100084, China (e-mail: junbi@tsinghua.edu.cn, wangyy@cernet.edu.cn).

Yu Zhou, Cheng Zhang and Zhaogeng Li, Mingli Yu are with the Institute
for Network Sciences and Cyberspace, Tsinghua University, the Department
of Computer Science, Tsinghua University, and the Beijing National Research
Center for Information Science and Technology (BNRist) (e-mail: {y-zhou16,
cheng-zhang13, li-zg07, yml14}@mails.tsinghua.edu.cn).

Bingyang Liu is with Huawei Technologies Co., Ltd. (liub-
ingyang@huawei.com).

A previous version of this paper has been published at ICNP’17 [1].

operators can define various match fields and construct com-
pound actions with primitive actions. Thirdly, operators can
organize multiple MATs as a consolidated Directed Acyclic
Graph (DAG) in the control flow. Lastly, operators can declare
data plane variables, e.g., metadata, registers, to store flow
states and conduct stateful operations. At runtime, the central-
ized controller, such as P4Runtime [10] and P4-ONOS [11],
can control a P4 program through populating MAT entries.
By provisioning an intuitive programming abstraction based
on above programmable elements, P4 empowers operators to
conduct in-depth customization of their networks, which en-
ables fast innovations on network infrastructures and protocols.

With PDP and P4 growing in importance and maturity,
runtime bugs in PDPs are becoming critical concerns. In
particular, PDP runtime bugs include P4 program bugs, mis-
configured MAT entries, inconsistency between P4 targets
and P4 specifications, implementation-specific bugs in P4
targets, and so on. Runtime bugs could cause abnormalities
(e.g., silent packet drops) in running P4 targets and might be
only triggered by specific flows under particular conditions.
Although troubleshooting runtime bugs is of great importance
to guarantee the correctness of PDPs, no debugging tool for
real P4 devices is available. Thus operators have to debug them
manually, which is cumbersome and time-consuming.

Furthermore, the following challenges make detecting and
locating runtime bugs for PDPs a difficult task for operators.

C1: Diversity of runtime bugs. Runtime bugs may happen
to any programmable element in diverse styles. For example,
operators may mistake a wrong field for the right one when
defining the if-else expressions, which makes packets traverse
undesired MATs. Moreover, a P4 target may not correctly
implement the primitive actions (as is shown in §IV-B), and
those primitive actions do not produce the behaviors defined
by the P4 specification. Accordingly, these bugs can cause
diverse kinds of abnormalities, e.g., malformed packets, black
holes, and permanent loops, which further hinder operators
from finding out causes of the runtime bugs.

C2: Invisibility of intrinsic states. Once a P4 program is
deployed onto a P4 target, operators cannot watch intrinsic
states that record processing behaviors of each packet in
PDPs. For P4, intrinsic states include intermediate metadata,
traversed MATs, primitive action parameters, and so on. These
intrinsic states are vital for detecting and locating runtime
bugs. For example, if operators cannot directly observe the
traversed MAT path (i.e., an ordered list of MATs that are
traversed by packets) of packets, operators cannot find which

2 IEEE/ACM TRANSACTIONS ON NETWORKING

MAT causes packet dropping (e.g., due to access controlling or
incorrect forwarding rules). However, P4 targets do not provide
sufficient access to the intrinsic states, which inevitably makes
debugging PDPs at runtime a challenging task.

C3: Complexity of locating bugs. As P4 programs grow in
size, operators can be overwhelmed by the complexity of
troubleshooting runtime bugs. For example, Switch.P4 [12]
contains 129 MATs, 76 if-else expressions, and 340 compound
actions. Thus, when an operator wants to find out why
Switch.p4 does not forward a packet as expected, he can do
nothing but dumps all table entries and reasons the bugs MAT
by MAT. Moreover, target-specific bugs further add up the
debugging complexity. For example, if a P4 target silently
drops packets when a MAT has an oversized match vector
(as is shown in §IV-B), dumping table entries and reasoning
P4 programs cannot help locate the bug.

Unfortunately, there remains a gap between existing de-
bugging tools and satisfactory solutions to the above chal-
lenges. On the one hand, existing tools are mainly designed
for well-studied traditional networks and can hardly handle
runtime bugs on PDPs. These tools can be categorized into
the following two types. Firstly, debugging tools [13]–[20]
are based on monitoring techniques. They focus on modelling
MATs without consideration of other programmable elements.
Besides, they suffer from a large performance overhead of
tracing real-time network traffic. Secondly, other debugging
tools [21]–[24] are based on static verification techniques.
They cannot automatically model the changes to forwarding
behaviors without reprogramming the model internals [25].
Moreover, they usually hypothesize that the data plane model
is correct and verify network properties (e.g., loop and reach-
ability) based on a snapshot of network states (i.e., MAT
entries). They cannot troubleshoot runtime bugs on PDPs.

On the other hand, verifying P4 programs raises new re-
searching interests and comes with a line of new works [25]–
[29]. These works can debug P4 programs and network state
snapshots through formal methods, e.g., Symbolic Execu-
tion [30]. With these tools, operators can detect and locate a
subset of runtime bugs such as bugs in P4 programs and mis-
configured MAT entries, but these P4 verification works can
hardly support real-time troubleshooting due to long execution
time. As these works cannot provide visibility into running P4
targets, they fall short of disposing of some runtime bugs, e.g.,
inconsistency between P4 targets and the P4 specification and
wrong primitive action implementation in P4 targets.

To bridge the gap and efficiently debug PDPs in runtime,
this paper introduces P4DB, a general debugging platform for
PDPs. By P4DB, operators can flexibly scrutinize PDPs and
P4 programs in real time with three levels of visibility.
• Network-level visibility provides operators with the net-

work path of the specified flow.
• Device-level visibility provides operators with the MAT

path of the specified flow in a running P4 program.
• Table-level visibility enables operators to inspect the

packet processing procedure step by step inside the MAT.

To support the visibility and simplify the debugging work-
flow, P4DB provides three novel designs.

S2S1

S3

Predication Match Action

Q1: What is the network
path of my packet?

Q2: What is the table path
of my packet?

Q3: What does the MAT do
to my packet?

MAT MAT

MAT

� watch

feedback

feedback

� watch

feedback

P4DB

� attach

P4DB

� break
P4DB
� detach

Network-level View

Device-level View

Table-level View

Fig. 1. Debugging the P4-enabled network with P4DB.

D1: Debugging snippets are designed to reveal real-time
states of programmable elements in PDP (C1 & C2). A
debugging snippet, in essence, is a data-plane code piece
that can be flexibly inserted into specified positions in a P4
program and report desired intrinsic states at runtime.

D2: Three-step MAT decomposition is devised to decom-
pose the MAT along with its predication expression equiva-
lently into three steps including predication step, match step
and action step (C1 & C2). Therefore, operators can embed
debugging snippets between these steps to finely inspect the
execution of the MAT in a single-step way.

D3: Debugging primitives are implemented by different
compositions of debugging snippets in PDP and provide intu-
itive and usable interfaces for operators to facilitate debugging
workflow (C3). With the help of the debugging primitives in-
cluding watch, break, next, etc., operators can avoid dumping
table entries and reasoning the bugs out table by table. Based
on these primitives, operators can develop debugging tools that
automatically troubleshoot the runtime bugs.

As is shown in Fig. 1, when debugging P4 programs,
operators can use the watch primitive to narrow the debugging
scope quickly from the network level to the table level.
Then, operators can use the break and next primitives to
decompose the MAT and inspect what happens to the packet
at runtime. We employ the debugging primitives to implement
four debugging tools including the network debugging CLI, the
flow path monitor, and so on, which are elaborated in §II-C.

In this paper, our contributions are as follows:

• To the best of our knowledge, P4DB is the first design of
an on-the-fly debugging platform to troubleshoot runtime
bugs in PDP. We demonstrate the feasibility and versatil-
ity of P4DB through real-world examples.

• For P4DB, we propose three novel designs to facilitate
troubleshooting various runtime bugs, simplify the debug-
ging workflow, and provision different levels of visibility.

• We implement the prototype of P4DB based on two
recently-proposed PDP models: the P4-specific PDP
model and the hypervisor-specific PDP model. Accord-
ingly, we evaluate P4DB on various P4 targets. Results
indicate that P4DB merely introduces a small perfor-
mance overhead on the software target and almost intro-
duces no performance overhead on the hardware target.

ZHOU et al.: P4DB: ON-THE-FLY DEBUGGING FOR PROGRAMMABLE DATA PLANES 3

The remainder of this paper is organized as follows. We
firstly describe the philosophy and functionality of P4DB in
§II. After that, the key designs are shown in §III. In §IV,
the debugging workflow of P4DB is demonstrated through a
real-world example, and we will introduce our experiences of
employing P4DB to troubleshoot runtime bugs on two widely-
used P4 targets. In §V, we evaluate P4DB. Then, we discuss
related work in §VI. Finally, we discuss feasibility of P4DB
in §VII and make a conclusion in §VIII.

II. OVERVIEW OF P4DB

A. The Philosophy of P4DB

Most bugs arise from the mistakes and errors made in
either a program’s source code or its design. Therefore, an
efficient way to debug is to allow programmers to inspect
what is happening inside the program. For operating systems,
programmers can load the application’s source code into the
debugger such as GDB [31], then insert a breakpoint into
the source code and check what is happening at runtime.
When a developer sets a breakpoint for a program, a small
piece of trap code, which switches the execution subject from
the program to the debugger, is inserted into the program.
However, in legacy networks, network devices are black boxes,
and operators have no access to the source code, which makes
the data plane hard to be debugged like software. Compared
with the legacy networks, PDP enables operators to flexibly
program device behaviors, which makes it possible to trace
real-time data plane states and debug data planes with an
approach similar to GDB.

Since no trap instruction is available for operators to
stop the execution of P4 programs, P4DB introduces pieces
of “report code”, named debugging snippets, to report the
states of programmable elements. A debugging snippet is
a small control flow composed of several MATs and can
report on-data-plane states of user-interested flows with a
minor performance overhead. Besides, different combinations
of debugging snippets can be used to implement various user-
friendly debugging primitives for operators. So operators can
use debugging primitives to dynamically control the debugging
snippets in the program and debug the program at runtime.
This way of using debugging snippets to implement debugging
primitives makes P4DB a general debugging platform which
is not constrained by the underlying targets and can be applied
to various MAT-based architectures including RMT [32] and
dRMT [33]. Furthermore, our design does not require any
modification of P4 targets, which implies that P4DB can work
smoothly with existing P4 targets.

B. PDP Models Supported by P4DB
P4DB is a general debugging platform to work with various

PDP models. In this section, we briefly introduce two available
PDP models and their characteristics. Next, we describe some
model-specific features utilized by P4DB.
P4-specific PDP model . The P4-specific PDP model is a
widely adopted model. In this PDP model, the programming
abstraction used in the P4 language is tightly coupled with the
P4 target implementation. Therefore, P4 programs can fully

benefit from the high performance of hardware devices [34].
However, this tight coupling between the high-level program
and the low-level hardware device can lead to a result that
every time operators need to modify the P4 program, the in-
terruption and reconfiguration of the P4 target are unavoidable.
Hypervisor-specific PDP model . Novel PDP models such as
Hyper4 [35], MPVisor [36], and HyperV [37], are proposed
to decouple high-level P4 programs with low-level P4 targets
by adding a light-weight hypervisor layer. Although there
is a performance overhead due to the additional hypervisor,
operators can dynamically reconfigure P4 programs without
suspending the P4 target. The hypervisor-specific PDP model
tries to provide the same programming abstraction for oper-
ators with the P4-specific PDP model, i.e., supporting direct
execution of native P4 programs. The key difference between
the hypervisor-specific PDP model and the P4-specific one is
that the former one supports dynamically loading P4 programs.
Features on various PDP models . Both the P4-specific PDP
model and the hypervisor-specific PDP model have their pros
and cons. P4DB is designed as a debugging platform that
presents debugging features by utilizing the programmability
provided by various PDP models. Meanwhile, P4DB also
offers the unique features of multiple PDP models as special
debugging features when being applied to debug the specific
PDP model. For instance, based on the hypervisor-specific
PDP model, P4DB can benefit from the uninterpreted feature,
i.e., P4DB does not need to redeploy the model to install
new debugging snippets, while it suffers from a performance
overhead of model translation. Oppositely, for the P4-specific
PDP model, P4DB provides high performance and language
compatibility but needs to recompile and redeploy the de-
bugged P4 program when installing new debugging snippets.
The detailed implementation of P4DB upon various PDP
models is further described in §III-H.
C. Debugging Tools Built upon P4DB

To demonstrate what debugging abilities P4DB provides
and how P4DB simplifies the workflow of debugging runtime
bugs, we introduce four useful debugging tools implemented
by the debugging primitives of P4DB.
Network debugging CLI . This tool shares a similar function-
ality with ndb [13] but provides more feature-rich debugging
commands than ndb. Specifically, network debugging CLI pro-
vides a native implementation for the high-level primitives of
P4DB. With the CLI, operators can use the useful commands
to debug P4 programs interactively.
Flow path monitor . Based on the watch primitive, the flow
path monitor provides the real-time information about which
path the packets of a designated flow traverse. Operators can
attain one sequenced port list which comprises the ingress port
and egress port of every traversed switch. Notably, based on
the network-level visibility of P4DB, the flow path monitor
can easily handle the complicated condition where the flow
has multiple paths.
Network-wide invariant verifier . This tool is based on the
flow path monitor to verify two network-wide invariants in-
cluding reachability and loop-free. Based on the path infor-
mation collected by the monitor, the network-wide invariant

4 IEEE/ACM TRANSACTIONS ON NETWORKING

PDP Models: P4-specific & Hypervisor-specific

D
at

a
 P

la
ne

C
on

tro
l

Pl
an

e

P4DB Debugging Platform

Debugging Message Service

PDP Model ManagerPDP Program Manager

Debugging Snippet Manager

Debugging Primitive Manager

A
pp

lic
at

io
n

Pl
an

e P4DB Debugging Tools
Network Debugging CLI, Flow Path Monitor,

Network-wide Invariant Verifier, et al.

MAT Decomposition Debugging Snippets

Debugging Primitives

Targets: Hardware & Software

Fig. 2. Architecture of P4DB.

verifier can easily check whether the flow is correctly for-
warded. As the verifier can get the ingress ports and egress
ports of the packets from the monitor, it can verify reachability
and loops for every individual path of the flow without any
confusion. Besides, the verifier can be configured to emit
invariant violation alerts automatically or to trigger the fail-
over operations such as recalculating forwarding paths.

Security policy checker . The objective of the security pol-
icy checker is to check whether security-related functions
(e.g., firewall) correctly process packets according to security
policies. Unlike the flow path monitor which only requires
the watch primitive, the security policy checker needs to
cooperate with the break and next primitives to check every
MAT of security-related functions. The checker can not only
report the security policy violation events but also help locate
the misconfigured MATs, which enables operators to resolve
the security policy violation events timely.

III. DESIGN OF P4DB

A. System Architecture

Fig. 2 shows the architecture of P4DB. Operators can de-
velop versatile debugging tools with the debugging primitives.
The debugging primitives are implemented by different com-
positions of debugging snippets. The PDP program manager
maintains the status of all P4 programs and their running
instances distributed in networks. The PDP model manager
maintains the mapping of the PDP model and the hardware
devices. The debugging message service maintains the control
channel between debugging snippets and the debugging plat-
form. Next, we will respectively elaborate the three primary
techniques including the three-step MAT decomposition, the
debugging primitives, and the debugging snippets.

B. Three-step MAT Decomposition

To provide fine-grained visibility, we decompose one MAT
into three sequential steps, i.e., the predication step, the match

step, and the action step. The predication step is functionally
equivalent to if-else expressions bounded with the MAT in
the control flow. Similarly, the match step executes the match
logic of the original MAT and outputs the table entry index.
The action step executes the action logic. Based on the
MAT decomposition, P4DB inserts the snippets after each
corresponding step to collect the data plane states and to
analyze data plane states for each step respectively. Then,
operators can use next to verify the correctness of each step.

Reasons for decomposing MATs . In P4 programs, the results
of the if-else expression, compiled like “hard-coded logic”
between MATs, are invisible to operators at runtime. Thus,
if the expression is wrongly programmed, there is no efficient
way to identify the bug except for manually reasoning packet
behaviors, which is nearly infeasible for real networks. As for
the match step and the action step, they are tightly coupled
with each other and concealed in one MAT. Consequently,
operators can only review the results for the MAT rather than
intrinsic states of the MAT. In the real-world debugging case,
knowing (i) which fields are matched and (ii) which actions are
executed for this packet are essential for operators to debug the
MAT. Thus, P4DB decomposes the MAT into three steps and
enables operators to finely oversee which actions are applied
to the exact packet in the MAT.

Simulation of Single-step Debugging . Although one MAT
can be decomposed into three steps, P4DB cannot suspend the
processing of a packet and conduct the decomposed steps one
by one for the packet. Thus in P4DB, we design a simulative
way with an assumption that packets in the network can trigger
the bug repetitively. In operating systems, the programmer can
merely observe the occurrence of the bug only after the bug
is triggered. However, the runtime bug in a P4 program can
be triggered by millions of packets belonging to the same
flow. In other words, there is no need for operators to follow
the procedure of processing one packet to find out what is
happening. Instead, P4DB focuses on the P4 program itself
and views packets as bug triggers. As long as the bug can
be persistently triggered by the packets in the same flow,
the single-step debugging approach can work well and enable
operators to inspect what happens to packets step by step.
Furthermore, we discuss bug recurrence in §VII.

C. Debugging Primitives
As shown in Fig. 3, we design a suite of high-level

debugging primitives. Internally, debugging primitives are
implemented by various compositions of debugging snippets.
Until now, there are seven fundamental primitives. With the
flourishing of debugging snippets, more debugging primitives
will be developed to facilitate the debugging workflow.

The attach and detach primitives can dynamically at-
tach/detach the debugger to a P4 program running on a
designated device. When operators issue the attach primitive,
P4DB loads the P4 program, analyzes the source code, checks
the specific PDP model on the hardware device, and prepares
the debugging environment.

The watch primitive provides operators with two levels
of visibility. One is network-level visibility, which shows the

ZHOU et al.: P4DB: ON-THE-FLY DEBUGGING FOR PROGRAMMABLE DATA PLANES 5

Primitives Synopsis

1) attach program switch
 This primitive attaches the debugger to the P4 program on user

specified switch.
program :

 The name of the P4 program.
 switch :
 The identifier of the switch, usually the data path id.
 use case:
 \> attach myfirewall 100001

2) detach program
 This primitive detaches the debugger from the attached program.

program :
 The name of the P4 program.

3) break [-n name] –t tablename –f {[field : value], … }
 This primitive sets a breakpoint to the match-action table specified by

tablename, and chooses the flow specified by the set of field and value
pairs to be debugged. The next primitive always follows the break
primitive.

 tablename :
 The name of the table that is being debugged.
 name :
 The optional name of the breakpoint defined by user.
 field :
 The name of the field. A field can be any field declared in the

P4 program, e.g. a header field or a metadata.
 value :
 The specific value of the field.
 use case:
 \> breakpoint –n mybp –t table_ipv4 –f {eth_hdr:0x1f

2f3f4f, ip_src:192.0.0.1, ip_dst:192.0.0.2}

4) next

This primitive will go through one step when the break primitive is
triggered. Each next command will illustrate the information of
predication, match and action step respectively.

5) watch [-s switch] –f {[field : value], … }
 This primitive will illustrate the path information of a flow specified

by the condition set of field and value.
 switch :

 If the switch is specified, watch primitive will show the table
path traversed by the specific flow, otherwise, it will show
the network path traversed by the specific flow.

 field :
 The name of the field. A field can be any field declared in the

P4 program e.g. a header field or a metadata.
 value :
 The specific value of the field.

 use case:
 \> watch –s 100001 –f {ip_src:192.168.0.0.1, user_met

a_var:2}

6) show [-b] [-p] [-a] [-t] [-h]

 This primitive shows the information of corresponding object.
 -b:
 This option shows the information of all breakpoints.
 -p:
 This option shows the information of all programs.
 -a:
 This option shows the information of all compound actions.
 -t:
 This option shows the information of all tables.
 -h:

 This option shows the information of all header fields
declared in the P4 program.

7) rmbp name

 This primitive removes the breakpoint specified by the name.
use case:

 \> rmbp mybp

Fig. 3. High-level debugging primitives provided by P4DB.

Data Plane Flow A
[dl_src: 0x111, …]

Flow B
[dl_src: 0x222, …]

\> watch –f {dl_src:0x111, …}
\> watch –f {dl_src:0x222, …}
Trace information:
Flow[dl_src: 0x111, …] : ingress t1 t3 egress
Flow[dl_src: 0x222, …] : ingress t1 t2 egress

CLI

t2
Watch

Snippet

Watch
Snippet

t1
t3

Watch Snippet

Match Action
dl_src=0x222 ,

…

dl_src=0x222,
…

generate_digest(watch_list)

generate_digest(watch_list)

Fig. 4. Use the CLI to manipulate watch snippets.

network path of the specified flow. The other is the device-level
visibility, which provides the MAT path of the specified flow
in a P4 target. Internally, P4DB inserts some watch snippets
into the switch or all switches, collects the reports, and shows
the trace of the flow.

The break and next primitives together enable operators to
debug one MAT with the table-level visibility. When operators
issue the break primitive, P4DB decomposes the MAT and
inserts the break snippet. Once the break snippet is triggered
by the specified flow, operators can issue the next primitive
to let P4DB dynamically install the predication snippet (or
activated the preset snippet) into the decomposed MAT. Then
operators can observe the states of the if-else expressions.
Afterwards, the following two next primitives will respectively
install the match snippet and action snippet, and present states
of the match step and action step.

We omit other primitives (e.g., rmbp and show in Fig. 3)
which are too trivial to be described in the paper. By utilizing
these primitives, debugging PDP becomes much simpler. Oper-
ators can select a flow, get the network-wide trace of the flow,
locate the possible device with bugs, check the device-wide
trace of the flow, find the possible MAT with bugs, inspect the
execution of the MAT step by step, and finally find the cause
of the bugs. Through these debugging primitives, operators
can conveniently debug the wrong implementations of various
programmable elements, such as the if-else expressions, match
operations, and compound actions. However, debugging the
other programmable elements, such as the parser and deparser,
exceeds the power of the debugging primitives.

D. Debugging Snippets

The debugging snippets match the flow specified by opera-
tors and report real-time states of programmable elements to
the P4DB platform. The match rules in debugging snippets
are instantiated by P4DB based on the parameters carried
in debugging primitives. The actions in debugging snippets
are set to report different programmable elements according
to the types of debugging snippets. When operators issue
a debugging primitive, P4DB will install the corresponding
debugging snippet into the PDP program and populate the
MATs in the debugging snippet. Different debugging snippets

6 IEEE/ACM TRANSACTIONS ON NETWORKING

report different digests. Once a debugging snippet is deployed
in PDP, it can match the flow and use the generate digest
action to send reporting messages to the P4DB platform.
There are five types of debugging snippets as follows.

Watch snippet . The watch snippet is implemented by one
MAT. The match rules in the watch snippet are configured ac-
cording to the parameters in the watch primitive. The actions
in the watch snippet are set to report two kinds of information,
including (i) the table entry, by which the debugging platform
can distinguish different specified flows, (ii) the identifier
of the watch snippet, by which the debugging platform can
identify the location of the watch snippet. As is shown in
Fig. 4, when the operator uses the watch primitive to observe
flow A and flow B. P4DB will install one watch snippet for
every MAT. If both flows do exist, then the watch snippets will
report the flow traces to the debugging platform. For example,
if operators issue ’watch -s 10001 -f {ip dst:1.1.1.1}’, P4DB
installs watch snippets for each MAT in the switch whose id
is 10001. The match field of the installed watch snippets is
the IP destination address (ip dst).

Break snippet . As is shown in Fig. 5, the break snippet,
together with the predication snippet, match snippet, and
action snippet enables operators to debug the MAT in a fine-
grained way. When an operator issues the break primitive
for one MAT, P4DB decomposes the MAT and installs the
break snippet. The decomposition of one match-action table
enables operators to use next to inspect the changing of
PDP states as well packet headers after each step. The break
snippet is implemented by one MAT and reports the data
plane states, including packet headers, metadata, etc., to the
debugging platform when triggered by the specified flow. The
triggering of the break snippet will not stop the traffic. Instead,
it creates a simulative environment. The break snippet will not
stop/pause the real traffic because P4DB cannot control the
server injecting the traffic. However, P4DB internally filters
the redundancy of the reported data sent from the break snippet
due to the continuous triggering of packets. As the break
snippet is continually triggered, P4DB will allow operators
to use next to debug the MAT in a single step.

Predication snippet . The predication snippet residing after
the predication step is implemented by one MAT to report
processing results of the programmable elements referenced in
the if-else expression. If the original MAT does not have any
predication expression, the predication step will do nothing
and pass the flow to the match step. Notably, the specified flow
will firstly be matched in the predication step, then be passed
to the predication snippet, while the normal flow will not be
passed to the predication snippet. P4DB presents predication
expressions as well as values of referenced variables.

Match snippet . The match snippet, implemented by one MAT,
reports the match fields and match results for the specified
flow in the match step. With this snippet, operators can inspect
which table entry is hit by the particular flow, and verify the
correctness of match rules. The match snippet can be set up
to process the target flow.

Action snippet . The action snippet, implemented by one MAT,

Control Plane

Data Plane

if (srcPort > 8080) apply(table_foo);

if (srcPort > 8080)
apply(table_foo);

Predication
Snippet

Match
Snippet

Action
Snippet

Predication
Step

Match
Step

Action
Step

Break
Snippet

Normal
Flow

Debugged
Flow

P4DB Debugging Platform

break next next next

MAT Decomposition

P4 Program

Fig. 5. Design of break snippets, predication snippets, match snippets and
action snippets.

reports packet headers, actions and action parameters. By the
action snippet, operators can verify whether a P4 program
processes a specified flow as expected. Notably, the action
step will process the specified flow and pass the flow to the
action snippet. Then in the action snippet, the specified flow
will trigger the snippet to report which actions and parameters
have been taken in the action step. Match rules and actions in
action snippets are instantiated when P4DB installs the action
snippet. Action snippets reports information including packet
headers and variables that are referenced in the actions.

E. An Extension of Debugging Snippets

Debugging snippets presented in §III-D can provide the
partial visibility of P4 programs. Moreover, for the P4-specific
PDP model, these debugging snippets require dynamic loading
or incur moderate PDP resource overheads, which inevitably
comes with limited feasibility. To overcome the feasibility
issue, we design an extension of debugging snippets, namely
pipeline snippet, which can supply full visibility of PDPs.
As is shown in Fig. 6, the pipeline snippet extends previous
debugging snippets from two perspectives.

Reporting MAT at the end of the control flow . Debugging
snippets can reside at any position of the control flow. Thus,
they can concentrate on the part of the control flow. Unlike
the previous ones, there is one pipeline snippet per control
flow. To avoid updating P4 programs, the pipeline snippet
contains a Reporting MAT residing at the end of the control
flow and reports packet processing results of all MATs. The
packet processing results include metadata and headers that
are modified in compound actions. However, the processing
results of all MATs might be too large to be reported at once.
For example, Switch.P4 requires over 1000 bytes to contain
all the processing results. We can have an observation that for
a particular packet, some MATs may not be traversed, and the
processing results of these MATs for this packet are not valid.
Based on the observation, we can report processing results of a
few MATs for a specific packet. Thus, we incorporate multiple
compound actions which respectively report processing results
for different MAT sets. As is shown in Fig. 6, each compound
action of Reporting MAT reports processing results of two
MATs, e.g., the first compound action uses generate digest
to report processing results of t1 and t2. If operators want to

ZHOU et al.: P4DB: ON-THE-FLY DEBUGGING FOR PROGRAMMABLE DATA PLANES 7

Pipeline Snippet

t�Match Action
ip.src

t�Match Action
ip.src = 1

m.ipsrc1 = 1

t�Match Action
ip.src = 3

m.ipsrc2 = 3

t�Match Action

Match ActionAction
m.ipsrc0 = ip.src generate_digest for

�� , ��

……
generate_digest for

��-� , ��

……

Replication
MAT

Reversed-match
Dependency

Action
Dependency

Original Control Flow

Reporting
MAT

Fig. 6. Design of the pipeline snippet composed of two MATs. The field
ip.src triggers reversed-match dependency between t1 and t2, and triggers
action dependency between t2 and t3.

oversee the processing results of other MATs for a specific
flow, they can update the corresponding table rules in Report
MAT without updating the P4 program.

Field replication in the control flow . Due to the action
dependency and the reversed-match dependency [38], pro-
cessing results of some MATs can be over-written by the
subsequent MATs. With the two dependencies, it is hardly
possible for the pipeline snippet to attain processing results of
all MATs without ambiguity. To overcome issues caused by
the dependencies, we replicate fields with specific metadata
(m in Fig. 6) and label the replicated fields with different
versions. Note that we only replicate the fields triggering the
action dependency and the reversed-match dependency instead
of all fields. Besides, we cannot replicate fields that trigger the
reversed-match dependency with the first MAT (i.e., t1 in the
figure), so we should replicate those fields with an additional
MAT, namely Replication MAT, at the beginning of the control
flow. Then, the pipeline snippet will report the original fields
as well as the replicated fields. Thus, we can get the processing
results of every MAT in the control flow.

Adding the pipeline snippet and field replication can be
automatically completed at the development stage. Compared
with the debugging snippets in §III-D, the pipeline snippet
does not require frequent updating of P4 programs, which
embraces better feasibility. Furthermore, the pipeline snippet
supports simulating functionality of other debugging snippets,
as the pipeline snippet can supply full visibility of P4 control
flow. However, the pipeline snippet inevitably comes with
compromises. It can only detect packets that can reach at the
pipeline end. In some cases (e.g., wrong match implementation
of SmartNIC), packets are dropped in the middle of the control
flow, disabling the pipeline snippet. In this respect, the pipeline
snippet is not aimed at replacing the previous debugging
snippets and can cooperate with them to debug PDPs.

F. Management of Debugging Snippets

P4DB adopts two ways to manage (installation/deletion) the
debugging snippets. One is the on-demand way, and the other
is the preset way. Both ways have their pros and cons. As
for the on-demand way, P4DB will not install the debugging

snippet until operators issue the corresponding debugging
primitive, and will delete the debugging snippet after operators
issue another debugging primitive. For example, P4DB will
delete the predication snippet and install the match snippet
only after operators issue second next. The break snippet, the
predication snippet, the match snippet, and the action snippet
are designed in this way. The performance overhead incurred
by this way is relatively small, since it does not need to install
all relevant debugging snippets into P4 programs.

As for the preset way, P4DB installs all related debugging
snippets once the operators issue the debugging primitives.
However, only the named debugging snippets are activated
while the others are muted. The watch snippet and the pipeline
snippet are designed in this way. When operators issue the
watch primitive, P4DB will install watch snippets for every
MAT in the P4 program. This way may suffer from a per-
formance overhead of multiple debugging snippets running in
the data plane. However, this way of installing snippets can
collect much more PDP states in case that the specified flow
is too short to be consistently debugged.

G. Performance Optimization

In a network, millions of packets may pass through the
data plane in every second. P4DB provides operators with
an on-the-fly debugging ability by debugging snippets, which
inevitably incurs the performance overhead. The purpose of
the debugging snippets is to (i) filter the specified flow
and (ii) report the intrinsic states of P4 programs and P4
targets. Accordingly, we propose two designs to reduce the
performance overhead in terms of filtering and reporting.
Filter placement . The placement of filtering will directly
impact the performance of the data plane. In P4DB, we put
forward two ways of placement in consideration of trade-offs
for different debugging snippets.

One is to place the filter rules for specified flows outside
the debugging snippet, e.g., the filter rules can be placed in the
match step, then the match step will filter the specified flow
and pass the chosen flow to the match snippet. In this way,
only selected flows will be allowed to traverse the debugging
snippet, and other normal traffic will bypass the debugging
snippet. As is shown in Fig. 5, the predication snippet, the
match snippet, and the action snippet adopt this way. This way
of placement can efficiently reduce the performance overhead,
although it has a limitation in expressing filter rules because
it requires that the debugged flow can be exactly matched by
the MAT outside the debugging snippet.

The other approach is to place filter rules inside the debug-
ging snippet and use the debugging snippet itself to filter flows.
In this way, all traffic, no matter whether it is being debugged,
will traverse both the debugging snippet and the original
procedure. As shown in Fig. 4 and Fig. 5, the watch snippet,
and the break snippet adopt this way of implementation.
Although this way may impose an extra overhead for filtering,
it offers more flexibility in customizing matching rules for
various debugged flows.
Message damper . The reporting traffic directly impacts the
performance of the data plane and control channel. A large

8 IEEE/ACM TRANSACTIONS ON NETWORKING

volume of reporting traffic inevitably incurs high CPU usage
on control planes as well as control channel congestions.

To mitigate the overhead incurred by reporting traffic, we
design an data-plane message damper to suppress the reporting
traffic. The message damper is implemented via periodically
sampling packets of each debugged flow. The message damper
maintains an adjustable threshold and a loop counter for each
debugged flow. The threshold denotes the period for sampling,
while the loop counter counts matched packets in the debugged
flow. When the counter reaches the threshold, it will be
reset to zero and trigger the debugging snippet to send one
reporting packet. The threshold can be dynamically adjusted
by operators. The message damper dramatically reduces the
performance overhead on the data plane and maintains the
debugging functionality of P4DB. If the threshold is too high,
the reporting traffic may be too slow to activate the liveness of
the breakpoint. Consequently, P4DB will lose the consistent
reporting traffic of the bugs, then it will automatically stop the
debugging and wait for reactivation of the breakpoint. If the
threshold is too low, there will be massive reporting traffic,
which impacts the control plane and the control channel.

H. Implementation on Different PDP Models
P4DB hides the heterogeneous implementations of underly-

ing PDP models and provides operators with a unified abstrac-
tion of PDP. This generality is internally implemented through
maintaining one PDP driver for every type of PDP model.
In this paper, we respectively implement P4DB on the P4-
specific PDP model and the hypervisor-specific PDP model.
Details of implementation can be found in the source code of
P4DB. In this section, we will discuss the implementation of
decomposed MAT for different PDP models.

In the P4-specific PDP model, the if-else expressions and
the MAT are closely tied in the control flow. Therefore, to im-
plement the MAT decomposition, we use two methods. (i) For
the predication step, we manage to use two MATs to represent
the function of the if-else expression equivalently. Based on
this technique, the if-else expression can be abstracted and
equally expressed by the predication step. (ii) For the match
step and action step, we add the MAT that merely matches the
flow without executing any actions to implement the match
step. In the action step, the MAT will execute the actions. As
for the hypervisor-specific PDP model, the MAT is already
decomposed based on their designs. Therefore, P4DB can be
readily applied to the hypervisor-specific PDP model.

IV. DEBUGGING WORKFLOW AND USE CASES OF P4DB

In this section, we present the workflow of P4DB through
a real-world example shown in Fig. 7. Besides, we briefly
introduce use cases about applying P4DB to debug runtime
bugs on two widely-used P4 targets.

A. Debugging Workflow of P4DB

To demonstrate the workflow of P4DB, we present the pro-
cedure of utilizing the network debugging CLI to interactively
debug a mistakenly-implemented compound action. As shown
in Fig. 7, Host A is sending packets to Host C. However, the

Device-level View

Table-level View

Network-level View

Host A

Host C

Switch 2Switch 1

Switch 3

Host B

Error
Path

Correct
Path

Watch
Snippett1 t2

t3

t4
Watch

Snippet
Break

Snippet
Watch

Snippet

Watch
Snippet

Predication
Step

Match
Step

Action
Step

Predication
Snippet

Match
Snippet

Action
Snippet

Switch 4

Zoom in Switch 2 (#2)

Zoom in t2 (#4)

#5 #6 #7

#3

Fig. 7. The hierarchical debugging workflow of P4DB.

packets traverse the error path (the red dashed line) rather
than the correct path (the green solid line). Then, operators
can employ the CLI to debug the P4 program on Switch 2.
Next, we will describe the debugging workflow step by step.

#1: The operator initializes the debugging context from the
CLI, uses the show primitive to check the name of the
PDP instance on Switch 2, and issues the attach primitive
to attach the debugger to the running instance.

#2: Then the operator starts to debug flows from Host A to
Host C by issuing the watch primitive with parameters
of the source address and destination address. Afterward,
as long as the specified flow continues, the operator will
see the device-level trace of the specified flow.

#3: The operator finds that the trace of the flow is t1→t2→t4
rather than t1→t2→t3. Therefore, he decides to debug t2
in the table-level visibility.

#4: The operator uses the show primitive to get the name of
t2 and issues the break primitive to t2 with the parameters
of the source address and the destination address. Then
the consistent flow will trigger the breakpoint.

#5: Afterwards, the operator issues the next primitive to
check the predication logic. The CLI provides the original
predication expression which is none for t2. Nothing is
wrong with this step.

#6: Then the operator issues the next primitive again to check
the match logic. The operator verifies the match fields and
values shown in the CLI and finds nothing wrong either.

#7: The operator issues the third next primitive, verifies the
variables and packets referenced in the action step, and
finds that one referenced metadata is not modified as
expected. Thus this wrong metadata leads to the erroneous
branching in the if-else statement after t2.

#8: The operator checks the primitive actions that are exe-
cuted in action step, and finally finds that two dependent
primitive actions in the compound action are disorderly
called. Thus, the bug is found!

#9: Lastly, the operator uses the detach primitive to stop
debugging. P4DB removes all debugging snippets in PDP.

ZHOU et al.: P4DB: ON-THE-FLY DEBUGGING FOR PROGRAMMABLE DATA PLANES 9

B. Two Use Cases of P4DB

In this section, we will introduce our experiences of using
P4DB on two widely-used P4 targets. One is BMv2 that
is an open-source P4 target for programmers to verify their
P4 programs. The other is SmartNIC, a commercial P4-
programmable NIC, which has been widely used to offload
various network functions [39]. For both cases, the P4 pro-
grams are functionally correct but show abnormal behaviors
due to the wrong P4 target implementations. Meanwhile, the
compiler, as well as the log of these P4 targets, gives no
notification of the wrong behaviors. Then, we apply P4DB
to debug the P4 targets and locate the elements that are
wrongly implemented by those P4 targets. Notably, the three-
step MAT decomposition shows its necessity when debugging
the runtime bugs incurred by P4 target bugs.

Wrong primitive action implementation on BMv2 . As a
standard behavioral model, BMv2 is expected to be imple-
mented in complete compliance with the P4 specification.
However, we utilize P4DB to find that one of the most impor-
tant primitive actions, modify filed, is mistakenly implemented
in BMv2. Our P4 program is implemented to modify the
variable length packet header with modify filed, but we find
that packets processed by this program contain many zeros
in their headers, which indicates that the packet headers are
wrongly modified. Then we attach this program to the CLI to
start the debugging procedure shown as follow.

Firstly, we issue watch, but we find that the MAT path
was correct. Secondly, we issue break for every MAT and
use the break snippet to report the packet headers. Then,
we find that when packets traverse the MAT that modifies
variable packet-header fields, all bits of the header field are
cleared to zero. Thirdly, we decompose this MAT into three
steps and watch the packet headers inside the MAT. Then, we
find that the predication snippet and the match snippet report
regular headers. In the action snippet, the abnormal header
field appears, but the reporting messages indicate that the MAT
applied the correct compound action with the correct action
parameters to the packets. After that, we reason the source
code of our P4 program and find that the P4 program invokes
modify field to update the packet header field whose length
is variable. However, BMv2 handles this invoking abnormally
and sets the field to zero without any notification.

Wrong match implementation on SmartNIC SmartNIC is
one of the off-the-shelf products that support P4 programming.
With the help of P4DB, we find that an oversized ternary
match vector can cause black holes in SmartNIC. After being
configured with our P4 program, SmartNIC cannot transfer any
packets. Firstly, we use watch to trace the MAT path. We find
that a MAT discards all packets. Secondly, we install the break
snippet in front of the MAT and decompose the MAT. Thirdly,
we find that the packets can trigger the predication snippet,
but the match snippet does not report any information. After
inspecting the match fields of the MAT entries, we find that the
packet can match the MAT. The match step could be the source
of the bug. Then we cut down the number of ternary match
bits in the MAT and reload the program into SmartNIC, and
the match snippet can report the packet information correctly.

Ingress Control Flow

forward

WS

PS

PS

Decomposition of
ipv4_nhop

Action

Match

MS

AS

WS

WS

BS

valid(ip)
&&

ttl > 0

P4 Target

Parser
Egress

Pipeline
Queue Deparser

Ingress
Pipeline

send_frame

WS

Egress Control Flow

Debugging Snippet Abbr.

WS Watch Snippet

BS Break Snippet

PS Predication Snippet

MS Match Snippet

AS Action Snippet

PPS Pipeline Snippet

Debugging
Snippet

If-else
Expressions

Match-action
Table

PPS

Fig. 8. Router.P4 with debugging snippets.

So we deduce that the oversized ternary match vector causes
SmartNIC to drop packets silently, and our further experiment
proves that there is a threshold number of the ternary match
bits in SmartNIC. If the match vector size of a MAT in a
P4 program outnumbers the threshold, SmartNIC will drop all
packets that traverse the MAT. The relevant code to verify this
bug is published at [40].

V. EVALUATION

A. Overview

Implementation. We implement P4DB on the P4 controller
[10] and evaluate P4DB on the P4-specific PDP model and the
hypervisor-specific PDP model. There are three hypervisor-
specific PDP models, i.e., MPVisor, HyperV, and Hyper4.
We choose MPVisor to conduct our experiments, for its
performance improvement and resource efficiency. Besides,
to evaluate the performance overhead of P4DB in the real
deployment, we implement P4DB on the 3.2T Tofino switch
[34] and test the performance overhead incurred by debugging
snippets. As MPVisor takes up too much resource which
is beyond the constraints of the programmable switch, we
only test the P4-specific PDP model on Tofino. Our code is
published at https://P4DB.github.io.

Setup. Our experiments are conducted on two off-the-shelf
servers, either of which has 2×4 Intel E5-2637 CPU 3.50Ghz
cores and 64GB memory. The P4 controller and BMv2 run
on different servers. We utilize MoonGen [41] as the packet
generator to emit and collect test packets. Moreover, each
server is equipped with a dual-port Intel 82599 NIC, so the
MoonGen traffic generators running on two servers manages
to generate up to 40G traffic. In our evaluation, we utilize
Router .P4 and Switch.P4 [12] as the P4 programs under
testing. As is shown in Fig. 8, Router .P4 has 3 MATs and 1
if-else expression. Switch.P4 has as many as 129 MATs. We
install six kinds of debugging snippets into the programs.

Metrics . First, inserted debugging snippets can influence
the throughput and delay of P4 programs, so we conduct
experiments regarding the performance of debugging snippets.
Second, debugging snippets can generate a large volume of
reporting traffic which may congest the control channel and
exhaust the CPU resource of the controller. To this end, we
conduct a case study on a typical tool based on P4DB, the

https://P4DB.github.io

10 IEEE/ACM TRANSACTIONS ON NETWORKING

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
T

h
ro

u
g

h
p

u
t

(G
b

p
s)

of watch snippets

 Router.P4 Switch.P4

(a) Throughput of the P4-specific PDP
model on BMv2.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

of watch snippets

D
el

ay
 (

µ
s)

(b) Delay of the P4-specific PDP
model on BMv2.

0 1 2 3 4
0

10

20

30

40

50

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

of watch snippets

 Router.P4 Switch.P4

(c) Throughput of the P4-specific PDP
model on Tofino.

0 1 2 3 4
0.0

1.0

2.0

3.0

4.0

5.0

of watch snippets

D
el

ay
 (

µ
s)

 25%~75% of Router.P4

 25%~75% of Switch.P4

 Outliers of Router.P4

 Outliers of Switch.P4

 Range within 1.5IQR

 Median Line Mean

(d) Delay of the P4-specific PDP
model on Tofino.

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

0.5

 Router.P4

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

of watch snippets

(e) Throughput of the hypervisor-
specific PDP model on BMv2.

0 1 2 3 4
0.1

0.2

0.3

0.4

0.5

0.6

 25%~75% of Router.P4 Median Line

 Mean Outliers

 Range within 1.5IQR

of watch snippets

D
el

ay
 (

m
s)

(f) Delay of the hypervisor-specific
PDP model on BMv2.

Fig. 9. Performance of watch snippets on two PDP models (Group 1).

flow path monitor, to evaluate the reporting message density
as well as CPU usage of the controller.

B. Data Plane Performance of P4DB
As for data plane performance, we employ three groups of

tests to demonstrate how different determinants can impact
performance on BMv2 and Tofino. The three groups are
conducted based on the hypervisor-specific PDP model and
the P4-specific PDP model respectively. Within each group,
we conduct two experiments to evaluate throughput and delay
of P4DB. As for throughput, in the experiments, the CPU
usage of BMv2 is around 300%. As for the delay, we conduct
100 times of the delay tests and present the inter-quartile (IQR)
range to show whether debugging snippets impact delay jitters.
For each test, we use the case without debugging snippets as
the baseline and run P4DB on two P4 programs, Router .P4
and Switch.P4. We do not implement Switch.P4 on the
hypervisor-based PDP due to the implementation complexity.
The metrics for each group are summarized as follows:
Group 1 Performance benchmarks in terms of different num-

ber of watch snippets without the message damper.
Group 2 Performance benchmarks in terms of different types

of debugging snippets without the message damper.
Group 3 Performance benchmarks in terms of different

damper thresholds and different numbers of rules.

Analysis of Group 1 . Fig. 9 shows the performance with
different numbers of watch snippets on two PDP models.

Throughput. As is shown in Fig. 9(a) and Fig. 9(e), de-
bugging snippets introduce a moderate throughput degradation
on the P4-specific PDP model and the hypervisor-specific
PDP model. Moreover, as watch snippets grow in number,

NS WS BS PS MS AS PPS
0.0

0.2

0.4

0.6

0.8

1.0

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

 Router.P4 Switch.P4

(a) Throughput of P4-specific PDP
model on BMv2.

AS BS MS NS PPS PS WS
0.0

0.2

0.4

0.6

0.8

1.0

D
el

ay
 (

µ
s)

(b) Delay of P4-specific PDP model
on BMv2.

NS WS BS PS MS AS PPS
0

10

20

30

40

50

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

 Router.P4 Switch.P4

(c) Throughput of the P4-specific PDP
model on Tofino.

AS BS MS NS PPS PS WS
0.0

1.0

2.0

3.0

4.0

5.0

D
el

ay
 (

µ
s)

 25%~75% of Router.P4

 25%~75% of Switch.P4

 Outliers of Router.P4

 Outliers of Switch.P4

 Range within 1.5IQR

 Median Line Mean

(d) Delay of the P4-specific PDP
model on Tofino.

NS WS BS PS MS AS
0.0

0.1

0.2

0.3

0.4

T
h

ro
u

g
h

p
u

t
(G

b
p

s) Router.P4

(e) Throughput of the hypervisor-
specific PDP model on BMv2.

AS BS MS NS PS WS
0.1

0.2

0.3

0.4

0.5

D
el

ay
 (

m
s)

 25%~75% of Router.P4

 Range within 1.5IQR Median Line

 Mean Outliers

(f) Delay of the hypervisor-specific
PDP model on BMv2.

Fig. 10. Performance of debugging snippets on two PDP models (Group 2).

the throughput of Router .P4 descends to a lower extent. For
Switch.P4, the throughput degradation is much smaller than
that of Router .P4, as Switch.P4 has much more MATs than
Router .P4. Fig. 9(c) shows that watch snippets do not in-
troduce obvious performance overheads on the Tofino switch.
However, the hypervisor-specific PDP model has complicated
internal control logic and requires tens of physical MATs
to implement a logical MATs. Thus, adding a MAT on the
hypervisor-specific PDP model equals to adding tens of phys-
ical MATs and comes with obvious throughput degradation.

Delay. As shown in Fig. 9(b), the number of watch snippets
has a little influence on the P4-specific PDP model running
on BMv2. Moreover, delay increase of Switch.P4 is smaller
than that of Router .P4. As Switch.P4 has more MATs than
Router .P4, the delay of Switch.P4 is also larger than that of
Router .P4. Nevertheless, Fig. 9(f) shows the watch snippets
incur a moderate delay increase on the hypervisor-specific PDP
model. As for Tofino, Fig. 9(d) shows that every snippet only
incurs a delay increase of several nanoseconds which account
for less than one percent of the total delay.

Analysis of Group 2 . Fig. 10 illustrates the performance of
P4 programs when embedding different snippets. NS which
denotes the baseline P4 program. The abbreviations such as
NS, MS, etc., are illustrated by the abbreviation table in Fig. 8.
For every case in these experiments, we only install one type
of snippets at one time. Besides, in the WS case, we install
four watch snippets to attain table paths of packets. As the
pipeline snippet is dedicated for the P4-specific PDP model,
we do not evaluate it on the hypervisor-specific PDP model.

Throughput. Fig. 10(a) and Fig. 10(e) show throughput

ZHOU et al.: P4DB: ON-THE-FLY DEBUGGING FOR PROGRAMMABLE DATA PLANES 11

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
T

h
ro

u
g

h
p

u
t

(G
b

p
s)

Damper threshold

 Damped BS in Router.P4

 Damped BS in Switch.P4

 NS in Router.P4 NS in Switch.P4

 BS in Router.P4 BS in Switch.P4

(a) Throughput of the P4-specific PDP
model on BMv2.

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

D
el

ay
 (

m
s)

Damper threshold

(b) Delay of the P4-specific PDP
model on BMv2.

0 10 20 30 40 50
0

10

20

30

40

50

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Damper threshold

 Router.P4 Switch.P4

(c) Throughput of the P4-specific PDP
model on Tofino.

0 10 20 30 40
0.0

1.0

2.0

3.0

4.0

5.0

Damper threshold

D
el

ay
 (

µ
s)

 25%~75% of Router.P4

 25%~75% of Switch.P4

 Outliers of Router.P4

 Outliers of Switch.P4

 Range within 1.5IQR

 Median Line Mean

(d) Delay of the P4-specific PDP
model on Tofino.

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

0.5

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Damper threshold

 Damped BS in Router.P4

 NS in Router.P4

 BS in Router.P4

(e) Throughput of the hypervisor-
specific PDP model on BMv2.

0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

 Damped BS in Router.P4

 NS in Router.P4

 BS in Router.P4

D
el

ay
 (

m
s)

Damper threshold

(f) Delay of the hypervisor-specific
PDP model on BMv2.

Fig. 11. Performance of the break snippet with the message damper on two
PDP models (Group 3).

with different types of debugging snippets on BMv2. Notably,
the WS case performs worst because it needs to embed four
watch snippets into P4 programs. Comparing with the baseline,
it merely achieves 791.6 Mbps with a throughput penalty
of 13.8% on the P4-specific PDP, and 163.7 Mbps with a
throughput penalty of 51% on the hypervisor-specific PDP.
However, on the P4-specific PDP model, other types of de-
bugging snippets only have a performance degradation of few
percents. Besides, the throughput penalty on MPVisor is larger
than on the P4-specific PDP model and ranges from 32.7%
to 38.5% when being compared with the baseline. As for the
throughput results shown in Fig. 10(c), the debugging snippets
do not introduce any throughput penalty on the programmable
switch. For all debugging snippets, Tofino keeps forwarding
packets at 40 Gbps. Besides, for Switch.P4, all debugging
snippets only incur little throughput degradation.

Delay. As is shown in Fig. 10(b) and 10(f), results differ
among two PDP models. As for the P4-specific PDP model,
there is little difference between the baseline and various de-
bugging snippets in delay. However, for MPVisor, the increase
of the delay ranges from 15% to 26% when being compared
with the baseline. As shown in Fig. 10(d), the debugging
snippets almost introduce no delay increase on Tofino.

Analysis of Group 3 . For this group, we test the performance
of debugging snippets with two metrics, i.e., damper thresholds
when the message damper is enabled and installed rules in
debugging snippets. (1) As for damper thresholds, throughput
and delay will be measured with different damper thresholds.
Besides, as there is little difference between the damped break

snippet and the two counterparts, we adopt the bar chart to
show the throughput and the box-plot to show the delay. (2) As
for rules in debugging snippets, we evaluate the performance
of Router .P4 with a BS on Tofino, and the number of rules
in the BS increases from 10 to 100K.

Damper threshold. As is shown in Fig. 11(a) and Fig. 11(e).
The throughput increases with the threshold. Even if the
threshold reaches 50, the throughput is still smaller than the
throughput of BS without a damper, because the message
damper itself incurs performance overheads. Besides, on the
P4-specific PDP model, when the threshold is larger than
10, the increasing of throughput tends to be stable. On
the hypervisor-specific model, the increasing of throughput
becomes stable after the threshold is larger than 30. As shown
in Fig. 11(c), the damper threshold has no impact on the
throughput on Tofino which can forward packets at 40 Gbps
for all tested damper thresholds. Fig. 11(b) and Fig. 11(f) show
that the damper has a positive effect on delay. With the damper
threshold increasing, the delay deceases. On the P4-specific
PDP model, the delay can be the same as the baseline delay.
Fig. 11(d) shows the packet-processing delay on Tofino, the
damper threshold does not influence delay.

of rules. We respectively show throughput and delay of
Router .P4 with varied numbers of rules in BS, which is shown
in Fig. 12. Furthermore, as one stage of Tofino could not hold
all rules. Thus, BS could occupy multiple stages to store all
corresponding rules. We can summarize from Figure 12 that
the number of rules installed in BS does not bring obvious
performance degradation on Tofino.

Summary . The performance of P4DB is different on the P4-
specific PDP model and the hypervisor-specific PDP model.
However, the difference can be mainly attributed to the per-
formance degradation caused by MPVisor itself. Although
the hypervisor-specific PDP model provides dynamic PDP
reconfiguration, it suffers from the performance overhead of
model translation. For the P4-specific PDP model, P4DB
incurs a minor performance overhead but faces interruption
of the PDP, even though the interruption time is usually under
50ms [34]. Notably, on Tofino, debugging snippets almost
introduce no performance overhead. P4DB makes a trade-
off between runtime visibility and performance. Furthermore,
we argue that introducing the promising ability of on-the-fly
debugging for PDP with acceptable performance degradation
is worthy, especially in the case of network outages.

C. Control Channel and Control Plane of P4DB

In this section, we use the performance of the flow path
monitor running on P4DB as a case study to explore the
feasibility and ability of P4DB. Besides, there remains a
concern that the messages generated by debugging snippets
could overwhelm P4DB running on the centralized controller,
which inevitably limits the scalability of P4DB. We provide
the message damper to mitigate this concern. To this end, we
accordingly evaluate (i) debugging messages in the control
channel and (ii) the CPU usage of the P4DB, when the flow
path monitor is activated.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

1x100 1x101 1x102 1x103 1x104 1x105
0

1

2

3

4

5

6

of Rules

D
el

ay
 (

µ
s)

 Min~Max of Delay Delay of Delay

 Throughput

0

20

40

60

80

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Fig. 12. Performance of Router.P4 on Tofino with
different numbers of rules.

1 2 4 8 16 32 64 128

0

300

600

900

1200

1500

M
es

sa
g

es
 p

er
 s

ec
o

n
d

Damper threshold (log-scale)

 # of switches = 1

 # of switches = 2

 # of switches = 4

 # of switches = 8

 # of switches = 16

Fig. 13. Debugging messages per second in the
control channel.

1 2 4 8 16 32 64 128

0

5

10

15

20

25

C
P

U
 (

%
)

Damper threshold (log-scale)

 # of switches = 1

 # of switches = 2

 # of switches = 4

 # of switches = 8

 # of switches = 16

Fig. 14. CPU usage of the flow path monitor with
different damper thresholds.

The flow path monitor keeps track of forwarding paths for
packets of designated flows. Thus, the monitor needs to attain
the ingress port and egress port of the packets on each hop.
So the hop number can directly influence the workload of the
monitor. Besides, the message damper could significantly cut
down the workload, so we can also use the damper threshold
as another variable. Furthermore, we utilize the messages (per
second) in the control channel and the controller CPU usage to
illustrate the performance of the monitor. For the evaluation,
we configure the monitor to keep track of a flow which emits
one hundred packets per second. With the number of the
traversed switches and the damper threshold varying, we can
have the following analysis.

Analysis of debugging messages . For this experiment, the
number of the messages is collected at the centralized P4DB
platform. As shown in Fig. 13, we have to admit that the
overall workload imposed by the monitor is not negligible,
which potentially influences the scalability of P4DB. How-
ever, through the message damper, P4DB can considerably cut
down the number of messages in the control channel without
compromising the functionality of the flow path monitor.
When the damper threshold reaches at 128, i.e., the watch
snippet report a message per 128 packets, there are only
several messages per second in the channel, even if packets of
the flow need to traverse sixteen switches.

Analysis of CPU usage . The CPU usage of the centralized
controller is measured to illustrate two issues. The first is the
scalability issue that may be caused by P4DB. As can be
seen in Fig. 14, when the damper threshold is set to one, the
flow path monitor requires more CPU resource to process the
workloads as the number of traversed switches increases. The
second one is the impact of the message damper. We can see
that when the message damper is added into the debugging
snippet, the CPU usage declines rapidly. Moreover, the CPU
usage declines to below 0.6% in all tested scenarios, when the
damper threshold is set to 64.

Summary . P4DB imposes a certain overhead on the control
channel and the control plane. Although the performance over-
head is primarily determined by the volume of the traffic that
is being debugged on the data plane, operators can adaptively
adjust the damper threshold to reduce the overhead from the
reporting traffic generated by debugging snippets. Overall,
our experiments show that the messages damper performs
powerfully in terms of improving the scalability of P4DB.

VI. RELATED WORK

P4 verification has attracted a lot of attentions. P4 verification
tools [27]–[29], [42] convert P4 programs to existing models

and employ mature techniques to identify bugs in P4 programs
and table rules. For example, in [25], the authors proposed a
static analysis tool that compiles P4 to Datalog. Then, the
verification model can be automatically updated as the P4
program changes. However, they cannot diagnose bugs that
happen in P4 targets, such as faulty P4 target implementations.
P4DB provides operators with full visibility of the data plane
states at runtime and can handle various types of runtime bugs.

Network troubleshooting has long been an important topic
which attracts a lot of researching efforts. Passively tracking
how packets are processed inside switches is a general ap-
proach for network troubleshooting. Based on this approach,
a line of tools have been designed. (1) ndb [13] and NetSight
[14] track all packets on data planes and provide a series
of interactive debugging commands to troubleshoot network
faults. But they have to generate a huge amount of tracking
workloads (i.e., reporting messages), which constrains their
scalability. (2) EverFlow [15] relies on the ’match-and-mirror’
design to enable tracking matched flows, which reduces the
tracking workloads. P4DB also employs match-action tables
to track matched flows. Furthermore, P4DB further reduces
tracking workloads via message dampers.

VII. DISCUSSION

As previously mentioned, P4DB implements the manage-
ment of the break, predication, match, and action snippets in
an on-demand way, and using the latest inbound traffic as the
trigger. Thus, it requires packets to consistently trigger the
runtime bugs. We consider this prerequisite of recurrence of
runtime bugs is somewhat common. For example, according
to [43], troubleshooting network bugs usually lasts for 30-
60 minutes which provides plenty of time for operators to
troubleshoot the bugs. Besides, for flows that are too short
to be debugged, P4DB can collaborate with the event-driven
debugging tools and some log-based verification designs to
bridge the gap. For example, P4DB can record the reporting
messages and perform the verification on the message history,
just like NetSight [14]. With the message history, P4DB can
timely troubleshoot the runtime errors triggered by short flows.

VIII. CONCLUSION

This paper is devoted to on-the-fly debugging of runtime
bugs for programmable data planes. We proposed P4DB as
a general debugging platform that empowers operators to
debug various runtime bugs with simplicity and visibility. We
proposed three novel designs including (1) the three-step MAT
decomposition, (2) debugging primitives, and (3) debugging
snippets. Besides, we introduce two methods to optimize the

ZHOU et al.: P4DB: ON-THE-FLY DEBUGGING FOR PROGRAMMABLE DATA PLANES 13

performance of P4DB and implement P4DB based on the
P4-specific PDP model and the hypervisor-specific PDP model
respectively. We have built a prototype of P4DB, published the
source code and evaluated the prototype in terms of data plane,
control plane and control channel. Evaluation results show that
P4DB enables operators to conveniently troubleshoot runtime
bugs in PDP-enabled networks and only incurs a moderate
performance overhead. As for the real deployment of P4DB
on the off-the-shelf programmable switch, debugging snippets
almost introduce no performance penalty.

REFERENCES

[1] C. Zhang, J. Bi, Y. Zhou, J. Wu, B. Liu, Z. Li, A. B. Dogar, and
Y. Wang, “P4db: On-the-fly debugging of the programmable data plane,”
in Proceedings of ICNP, 2017, pp. 1–10.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[3] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in Proceedings of HotSDN.
New York, NY, USA: ACM, 2013, pp. 127–132.

[4] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics,”
in Proceedings of SIGCOMM. New York, NY, USA: ACM, 2017, pp.
15–28.

[5] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: Data plane perfor-
mance diagnosis of tcp,” in Proceedings of SOSR. New York, NY,
USA: ACM, 2017, pp. 61–74.

[6] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
“Netcache: Balancing key-value stores with fast in-network caching,” in
Proceedings of SOSP. New York, NY, USA: ACM, 2017, pp. 121–136.

[7] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of SOSR. New York, NY, USA: ACM, 2016, pp. 10:1–10:12.

[8] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “Netpaxos:
Consensus at network speed,” in Proceedings of SOSR. New York, NY,
USA: ACM, 2015, pp. 5:1–5:7.

[9] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soulé, C. Kim, and
I. Stoica, “Netchain: Scale-free sub-rtt coordination,” in Proceedings of
NSDI, Renton, WA, 2018, pp. 35–49.

[10] P4 Language Consortium., “P4 runtime: a control plane framework and
tools for the p4 programming language,” Website, https://github.com/
p4lang/PI.

[11] ONOS, “P4 support via bmv2 and p4runtime,” Website,
https://wiki.onosproject.org/display/ONOS/P4+support+via+BMv2+
and+P4Runtime.

[12] The P4 Language Consortium, “Consolidated switch repo (api, sai and
nettlink),” Website, https://github.com/p4lang/switch.

[13] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown,
“Where is the debugger for my software-defined network?” in Proceed-
ings of HotSDN. New York, NY, USA: ACM, 2012, pp. 55–60.

[14] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,
“I know what your packet did last hop: Using packet histories to
troubleshoot networks,” in Proceedings of NSDI. Seattle, WA: USENIX
Association, 2014, pp. 71–85.

[15] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-level telemetry in
large datacenter networks,” SIGCOMM Comput. Commun. Rev., vol. 45,
no. 4, pp. 479–491, Aug. 2015.

[16] R. Durairajan, J. Sommers, and P. Barford, “Controller-agnostic sdn
debugging,” in Proceedings of CoNEXT. New York, NY, USA: ACM,
2014, pp. 227–234.

[17] P. Zhang, H. Li, C. Hu, L. Hu, L. Xiong, R. Wang, and Y. Zhang, “Mind
the gap: Monitoring the control-data plane consistency in software
defined networks,” in Proceedings of CoNEXT. NY, USA: ACM, 2016,
pp. 19–33.

[18] Q. Zhi and W. Xu, “Med: The monitor-emulator-debugger for software-
defined networks,” in Proceedings of INFOCOMM, April 2016, pp. 1–9.

[19] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann, “Ofrewind:
Enabling record and replay troubleshooting for networks,” in Proceed-
ings of USENIX ATC. Berkeley, CA, USA: USENIX Association, 2011,
pp. 29–29.

[20] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “Automatic test
packet generation,” IEEE/ACM Trans. Netw., vol. 22, no. 2, pp. 554–566,
Apr. 2014.

[21] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T. King,
“Debugging the data plane with anteater,” in Proceedings of SIGCOMM.
New York, NY, USA: ACM, 2011, pp. 290–301.

[22] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proceedings of NSDI. San Jose, CA:
USENIX, 2012, pp. 113–126.

[23] K. Bu, X. Wen, B. Yang, Y. Chen, L. E. Li, and X. Chen, “Is every
flow on the right track?: Inspect sdn forwarding with rulescope,” in
Proceedings of INFOCOM, April 2016, pp. 1–9.

[24] P. Perešı́ni, M. Kuźniar, and D. Kostić, “Monocle: Dynamic, fine-grained
data plane monitoring,” in Proceedings of CoNEXT. New York, NY,
USA: ACM, 2015, pp. 32:1–32:13.

[25] N. Mckeown, T. Dan, G. Varghese, N. Lopes, N. Bjorner, and A. Ry-
balchenko, “Automatically verifying reachability and well-formedness
in p4 networks,” 2016.

[26] A. Nötzli, J. Khan, A. Fingerhut, C. Barrett, and P. Athanas, “P4pktgen:
Automated test case generation for p4 programs,” in Proceedings of
SOSR. New York, NY, USA: ACM, 2018, pp. 5:1–5:7.

[27] L. Freire, M. Neves, L. Leal, K. Levchenko, A. Schaeffer-Filho, and
M. Barcellos, “Uncovering bugs in p4 programs with assertion-based
verification,” in Proceedings of SOSR. New York, NY, USA: ACM,
2018, pp. 4:1–4:7.

[28] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, R. Soulé,
H. Wang, C. Caşcaval, N. McKeown, and N. Foster, “p4v: Practical ver-
ification for programmable data planes,” in Proceedings of SIGCOMM.
Budapest, Hungary: ACM, 2018, pp. 1–14.

[29] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and C. Raiciu,
“Debugging p4 programs with vera,” in Proceedings of SIGCOMM.
Budapest, Hungary: ACM, 2018, pp. 1–14.

[30] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, no. 7, pp. 385–394, Jul. 1976.

[31] GNU, “Gdb: The gnu project debugger.” Website, http://www.gnu.org/
software/gdb/.

[32] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Iz-
zard, F. Mujica, and M. Horowitz, “Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn,” in Pro-
ceedings of SIGCOMM. New York, NY, USA: ACM, 2013, pp. 99–
110.

[33] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,
G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and
T. Edsall, “drmt: Disaggregated programmable switching,” in Proceed-
ings of SIGCOMM. New York, NY, USA: ACM, 2017, pp. 1–14.

[34] Barefoot Networks, “Barefoot tofino switch,” Website, https://
barefootnetworks.com/technology/.

[35] D. Hancock and J. Van der Merwe, “Hyper4: Using p4 to virtualize the
programmable data plane,” in Proceedings of CoNEXT. New York, NY,
USA: ACM, 2016, pp. 35–49.

[36] C. Zhang, J. Bi, Y. Zhou, A. B. Dogar, and J. Wu, “Mpvisor: A modular
programmable data plane hypervisor,” in Proceedings of SOSR. New
York, NY, USA: ACM, 2017, pp. 179–180.

[37] C. Zhang, J. Bi, Y. Zhou, A. Basit, and J. Wu, “Hyperv: A high
performance hypervisor for virtualization of the programmable data
plane,” in Proceedings of ICCCN, 2017, pp. 1–9.

[38] L. Jose, L. Yan, G. Varghese, and N. Mckeown, “Compiling packet pro-
grams to reconfigurable switches,” in Proceedings of NSDI. USENIX
Association, 2015, pp. 103–115.

[39] Netronome., “Agilio cx 2x10gbe,” Website, https://www.netronome.com/
products/agilio-cx/.

[40] “Over-sized ternary match cause black holes in smartnic,” Website, https:
//github.com/p4db/p4db-issues.

[41] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle,
“Moongen: A scriptable high-speed packet generator,” in Proceedings
of IMC. New York, NY, USA: ACM, 2015, pp. 275–287.

[42] N. P. Lopes, N. Bjørner, P. Godefroid, K. Jayaraman, and G. Varghese,
“Checking beliefs in dynamic networks,” in Proceedings of NSDI.
Oakland, CA: USENIX Association, 2015, pp. 499–512.

[43] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A survey on
network troubleshooting,” Website, http://yuba.stanford.edu/∼peyman/
docs/atpg-survey.pdf.

https://github.com/p4lang/PI
https://github.com/p4lang/PI
https://wiki.onosproject.org/display/ONOS/P4+support+via+BMv2+and+P4Runtime
https://wiki.onosproject.org/display/ONOS/P4+support+via+BMv2+and+P4Runtime
https://github.com/p4lang/switch
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/gdb/
https://barefootnetworks.com/technology/
https://barefootnetworks.com/technology/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://github.com/p4db/p4db-issues
https://github.com/p4db/p4db-issues
http://yuba.stanford.edu/~peyman/docs/atpg-survey.pdf
http://yuba.stanford.edu/~peyman/docs/atpg-survey.pdf

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Yu Zhou Yu Zhou received the B.S. degree from
the School of Information and Communication En-
gineering, Beijing University of Posts and Telecom-
munications, Beijing, China, in 2016. He is cur-
rently pursuing the Ph.D. degree with the Institute
for Network Sciences and Cyberspace, Tsinghua
University. His research interests include software-
defined networking and programmable data planes.

Jun Bi (S’98–A’99–M’00–SM’14) received B.S.,
C.S., and Ph.D. degrees in Department of Com-
puter Science at Tsinghua University, Beijing, China.
Currently, he is a Changjiang Scholar Distinguished
Professor of Tsinghua University and the director
of Network Architecture Research Division, Institute
for Network Sciences and Cyberspace at Tsinghua
University. His current research interests include
Internet Architecture, SDN/NFV, and Network Se-
curity. He successfully led tens of research projects,
published more than 200 research papers and 20

Internet RFCs or drafts, owned 30 innovation patents, received national sci-
ence and technology advancement prizes, IEEE ICCCN outstanding leadership
award, and best paper awards.

Cheng Zhang received currently pursuing the Ph.D.
degree with the Department of Computer Science,
Tsinghua University, Beijing, China. He has pub-
lished papers in SIGCOMM, ICNP, SOSR, ICCCN,
and ISCC. His research interests include Internet ar-
chitecture, software-defined networking, data plane
virtualization, and the programmable data plane.

Bingyang Liu received a B.S. degree in computer
software from Tsinghua University, China. He was
a joint Ph.D. student in the Department of Com-
puter Science, Duke University. He received a Ph.D.
degree in computer science from Tsinghua Uni-
versity, China. His research fields include Internet
architecture, DDoS defense, and software-defined
networking (SDN).

Zhaogeng Li received the B.S. and Ph.D. degrees
from Tsinghua University. He is currently a Senior
Engineer with Baidu Inc. His main research interest
includes datacenter network, RDMA, information-
centric network, and edge computing.

Yangyang Wang received his B.S. degree in com-
puter science and technology from Shandong Uni-
versity, China in 2002, M.S. degree from Capital
Normal University, China in 2005, and Ph.D. degree
from the Department of Computer Science of Ts-
inghua University, China in 2013. He is currently a
postdoctoral scholar in computer science at Tsinghua
University. His research interests include Internet
routing architecture, future Internet design, and SDN

Mingli Yu received a B.S degree in computer
science and engineering from Tsinghua University,
China. He is currently a master student in the
Department of Computer Science and Engineering,
Pennsylvania State University. His research fields in-
clude network reconnaissance and software-defined
networking(SDN).

	Introduction
	Overview of P4DB
	The Philosophy of P4DB
	PDP Models Supported by P4DB
	Debugging Tools Built upon P4DB

	Design of P4DB
	System Architecture
	Three-step MAT Decomposition
	Debugging Primitives
	Debugging Snippets
	An Extension of Debugging Snippets
	Management of Debugging Snippets
	Performance Optimization
	Implementation on Different PDP Models

	Debugging Workflow and Use Cases of P4DB
	Debugging Workflow of P4DB
	Two Use Cases of P4DB

	Evaluation
	Overview
	Data Plane Performance of P4DB
	Control Channel and Control Plane of P4DB

	Related Work
	Discussion
	Conclusion
	References
	Biographies
	Yu Zhou
	Jun Bi (S'98–A'99–M'00–SM'14)
	Cheng Zhang
	Bingyang Liu
	Zhaogeng Li
	Yangyang Wang
	Mingli Yu

